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We consider the problem of real-time scheduling in uniprocessor devices powered by energy
harvesters. In particular, we focus on mixed sets of tasks with time and energy constraints: hard
deadline periodic tasks and soft aperiodic tasks without deadlines. We present an optimal aperiodic
servicing algorithm that minimizes the response times of aperiodic tasks without compromising
the schedulability of hard deadline periodic tasks. The server, called Slack Stealing with energy
Preserving (SSP), is designed based on a slack stealing mechanism that profits whenever possible
from available spare processing time and energy. We analytically establish the optimality of SSP.

Our simulation results validate our theoretical analysis.
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1. INTRODUCTION

The lifetime of battery-powered embedded devices is limited
by the amount of energy that can be stored in the batteries.
Furthermore, in many applications such as submarine, nuclear
and medical, the location of these devices renders the activity of
replacing batteries infeasible or very costly. As a consequence,
green solutions based on ambient energy have appeared in the
past decade. Intensive research has been conducted on energy
harvesting (EH) for small devices such as wireless sensors.
Solar, vibrational and thermal energy among others can be
scavenged from the surroundings of an embedded device to
replenish its battery or capacitor. The technical challenges
to achieve energy autonomy and to make EH systems work
effectively were initially described in [1], [2]. Among these
new challenges of researchers, EH aware scheduling is a very
important one.

An EH system consists of a single processing unit with
unique voltage and frequency, a set of jobs, an energy storage
unit, an EH unit and an energy source (Fig. 1).

In this paper, we focus on hard real-time systems that require
a priori guarantee that all timing constraints can be met. Real-
time schedulability theory provides firm guarantees for peri-
odic executions of a set of tasks on uniprocessors in terms of
assurances to meet deadlines (see [3] and [4] for surveys). The

schedulability theory for real-time systems relies on a priori
knowledge of the worst-case execution time (WCET) of hard
real-time tasks to check if the deadline of a task can be met.
A safe upper bound on the WCET of a task can be provided
through static analysis, dynamic analysis or even a combination
of both techniques.

Conventional task scheduling techniques are non-idling, i.e.
make the processor necessarily busy if at least one task is
pending for execution. With dynamic priority assignment, task
priorities are assigned to individual jobs. For example, earliest
deadline first (EDF) assigns the highest priority to the task
with the closest deadline [5]. EDF is optimal and achieves
100% processor utilization with no energy consideration [6].
Recently, it has been pointed out that EDF is the best non-
idling strategy for systems with EH capabilities although it
may behave very poorly [7]. We have shown a new idling
scheduling algorithm, namely energy deadline with energy
harvesting (ED-H) to be optimal: if a task set can be scheduled
by any algorithm on a platform composed of given processor,
energy harvester and energy reservoir, then it can be scheduled
using the ED-H algorithm on the same platform [8]. ED-H
dynamically assigns priorities based upon the deadlines of the
tasks as EDF but provides an optimal solution at the cost of
clairvoyance features since its relies on accurate prediction on
the incoming energy source.
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FIGURE 1. A real-time energy harvesting system.

Real-time systems must be able to handle not only periodic
tasks but also soft aperiodic tasks with irregular arrival times
and no deadlines. Periodic tasks are generally used to imple-
ment activities such as sensory acquisition or control loops,
which need to be executed at constant rates to insure system
stability. Hence, periodic tasks often have hard deadlines that
must be met under all anticipated circumstances. On the other
hand, aperiodic tasks are usually employed to implement non-
critical activities. The goal of the scheduler is to guarantee the
deadlines of periodic task while providing good response times
for soft aperiodic tasks.

There have been extensive studies on the scheduling of
periodic tasks and soft aperiodic tasks for several decades [9].
Fixed priority as well as dynamic priority algorithms can be
found in the literature [4]. For example, Spuri and Buttazzo
proposed the total bandwidth (TB) server that provides optimal
responsiveness for dynamic priority systems [10]. Under the
TB server, a suitable deadline is assigned to each occurring ape-
riodic task so as to schedule it according to the EDF algorithm
together with the periodic tasks.

Chetto H. and Chetto M. used a slack stealing technique to
propose the so called earliest deadline as late as possible (EDL)
server [11] [12] [13]. Slack stealing attempts to make time for
servicing aperiodic task by stealing all the processing time it
can from the periodic tasks [14][15].

The above approaches target a single processor and indepen-
dent task sets, in which no energy constraint is defined.

This paper presents several contributions:

• An aperiodic task servicing algorithm, called Slack Steal-
ingwithenergyPreserving (SSP), isprovided fordynamic
priority systems with EH constraints. SSP is an energy
aware version of the EDL-based slack stealing server.
In SSP, both energy consumed by the tasks and energy
drawn by the harvester from the environment are con-
sidered. In addition to the system slack time, the so-
called system slack energy is dynamically computed.
This allows to determine when to execute any occurring
aperiodic task with optimal responsiveness while guar-

anteeing no deadline violation for the periodic tasks and
no energy starvation.

• We describe the optimality analysis of this novel aperi-
odic task server.

• This work integrates experimental simulations on
randomly generated task sets to validate the proposed
approach and provide quantitative results.

The rest of this paper is organized as follows: the system
model is presented in the subsequent section. Section 3 gives
background materials. The algorithm for soft aperiodic task
handling and the proof of optimality are presented in section 4.
Simulation results in section 5 illustrate its effectiveness. Sec-
tion 6 includes the related work. Finally, section 7 concludes
the paper.

2. ASSUMPTIONS AND TERMINOLOGY

All properties of the proposed algorithm will be proved under
the following assumptions.

2.1. Task assumptions

We will consider the following assumptions: a periodic task set
τ can be denoted as follows: τ = {τi | 1 ≤ i ≤ n}. Each
periodic task τi has a period Ti, a relative deadline Di, a constant
WCET Ci (normalized to processor computing capacity) and
a constant worst case energy requirement Ei. Ci and Ei can
be derived by a static analysis of the source code. So we
use a periodic task model with the four-tuple (Ci, Ei, Di, Ti)

associated with τi. We consider a constrained-deadline task set
τ in which 0 < Ci ≤ Di ≤ Ti. Task τi generates jobs that are
released at times 0, Ti, 2Ti,... and must complete by times Di,
Ti + Di, 2Ti + Di,... The hyperperiod H of a periodic task set
is defined as the least common multiple (LCM) of the request
periods Ti, that is H = LCM(T1, T2, ..., Tn). The processor
utilization of the periodic task set τ is Upp = ∑

τiετ
Ci
Ti

, which
is less than or equal to 1. Similarly, we define the energy
utilization of τ as Uep = ∑

τiετ
Ei
Ti

, which characterizes the
average energy consumption of τ per time unit.

A job is any request that a task makes. A four-tuple
(rj, Cj, Ej, dj) is associated with a job Jj and gives its release
time, WCET, worst-case energy consumption and (absolute)
deadline, respectively. The task set τ gives rise to an infinite
set of jobs that are scheduled by the optimal uniprocessor
scheduler ED-H. Throughout our discussion, we will assume
that the processor has one operating frequency and its energy
consumption is only due to dynamic switching energy.

Additional tasks called aperiodic arrive in the system
irregularly. Each aperiodic task has WCET and worst-case
energy requirement considered to be known at its arrival
time i.e. the time at which the task is activated and becomes
ready to execute. All aperiodic tasks are without deadlines
and unpredictable arrival times. We will use the following

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2020
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Optimal Slack Stealing Servicing 3

notation throughout the paper: Ap is a stream of aperiodic
occurrences defined as Ap = Api(ai, ci, ei), i = 1..m, where
ai is the arrival time, ci is the WCET and ei is the worst case
energy requirement. The finish time of Api will be denoted
by fi.

The overhead due to context (processor) switching and
interrupt attention is assumed to be negligible compared with
computational time of the tasks or, otherwise, included in it.
Tasks do not suspend themselves or synchronize with other
tasks.

2.2. Energy assumptions

At every time t, the harvester (e.g. solar panel) draws energy
from ambient and converts it into electrical power with instan-
taneous charging rate Pp(t) that incorporates all losses. The
energy harvested in the time interval [t1, t2) is thus given by
Ep(t1, t2) = ∫ t2

t1
Pp(t)dt. We assume that the energy production

times can overlap with the consumption times. The energy
consumed in any unit time slot is no less than the energy
produced in the same unit timeslot. Consequently, the residual
capacity of the energy storage is never increasing every time
a job executes. And the remaining energy needed by any job
executing on the processor has to be drawn from the reservoir.
The energy produced by the source is not controllable and not
necessarily a constant value.

But we can predict it accurately for the near future with
negligible time and energy cost.

Our system uses an ideal energy reservoir (e.g. super-
capacitor or rechargeable battery) to continue operation even
when there is no energy to harvest. Its nominal capacity C
corresponds to the maximum amount of energy that can be
stored at any time. The energy reservoir receives power from
the harvester and delivers power to the processor. The stored
energy at any time t is denoted E(t). The energy reservoir does
not leak any energy over time. If it is fully charged at time t
and we continue to charge it, energy is wasted. In contrast, if it
is fully discharged at time t (energy depletion), no job can be
executed.

2.3. Origins of deadline violation

According to the previous model, a job misses its deadline if
one of the two following situations occurs: when the job reaches
its deadline at time t, its execution is incomplete because the
time required to process the job by its deadline is not sufficient.
When the job reaches its deadline at time t, its execution is
incomplete because the energy required to process the job by
its deadline is not available. The energy in the reservoir is
exhausted when the deadline violation occurs.

In subsequent sections, we will assume that no deadline
violation may occur. In other terms, the periodic task set
is schedulable using the optimal deadline driven schedu-
ler ED-H.

TABLE 1. Parameters of periodic tasks.

Task Ci Di Ti

τ1 2 8 9
τ2 2 10 12
τ3 2 15 18

3. PREVIOUS WORK

3.1. Aperiodic servicing

Many real-time systems contain non-periodic tasks that have
significantly varying arrival times and no deadline. Scheduling
algorithms must be able to provide good average response
times for aperiodic tasks without jeopardizing the schedula-
bility of the periodic ones, even though their arrivals are non-
deterministic.

One common approach is background processing: aperiodic
requests are served only whenever the processor is idle i.e. no
periodic tasks are ready to run. This kind of aperiodic schedul-
ing is the simplest possible. However, if the load of the periodic
task set is high, then utilization left for background service is
low, and service opportunities are relatively infrequent.

Other algorithms have been proposed in the literature [4].
The slack stealer is one of them, which has been specifically
designed for EDF.

The slack stealing is a class of algorithms that allocate
dynamically idle processor capacity to non-periodic tasks. This
approach overcomes the drawbacks of background servicing. It
is optimal in the sense that it minimizes the response times of
aperiodic tasks among all algorithms while meeting the hard
deadlines of the periodic tasks [11]. Moreover, it can handle
burstly arrivals of aperiodic requests and does not require to
know a priori their WCETs.

The idea is to postpone the execution of periodic activities,
making any spare processing time available as soon as pos-
sible for the aperiodic activities. The slack time is computed
dynamically whenever necessary, using a preprocessing step
for more efficiency. When there are no aperiodic activities in
the system, the periodic tasks are scheduled according to the
EDF algorithm. A means of determining the slack time is thus
key to the operation of the algorithm (see [13] for details).
The worst-case complexity of the algorithm is O(m.n) where
m = O(Tn/T1) and n is the number of periodic tasks.

3.1.1. Using the slack: an example
We show how slack in EDL server can be used to execute
soft aperiodic tasks. Let us consider a real-time system with
three periodic tasks whose real-time parameters are shown on
Table 1.

Figure 2 shows how tasks are scheduled from time 0 to H.
Arrows represent the time when task is invoked. We show five
idle intervals at times 6, 11, 14, 22, 26 and 29, respectively.

Section B: Computer and Communications Networks and Systems
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FIGURE 2. Tasks scheduled by the EDF discipline.

FIGURE 3. Tasks delayed during maximum amount of time through
the slack stealing mechanism.

Let us assume an aperiodic task arrives at time 4 (Fig. 3).
Postponing the execution of the periodic tasks as much as
possible from time 4, we can produce idle intervals at times 4,
17, 22, 26 and 35, respectively. When hard real-time tasks are
delayed the maximum amount of time that they can support,
the response time of soft tasks is minimized. If no soft task is
ready for execution, then a periodic task is executed and the
slack remains available for the future.

In the next section, we will extend the slack stealer server to
deal with energy constraints.

3.2. ED-H scheduling

In a system with limitations and fluctuations in energy avail-
ability, simply executing jobs according to the EDF rule, either
as soon as possible (EDS) or as late as possible (EDL) may
lead to violate some deadlines because of energy starvations.
This is why, in energy constrained systems, dynamic power
management plays a crucial role due to its impact on the
resulting performance. The dynamic power management rule
permits to decide when to put the processor in the active mode
and for how long time. The objective of such a policy is to
prevent from energy depletion while still preserving the system
from deadline violation. Consequently, we presented a novel
energy-aware scheduling algorithm ED-H (earliest deadline
under energy harvesting settings) and we proved it to be optimal

[8]. ED-H orders the ready jobs according to the EDF rule but
performs a test before dispatching the highest priority job so
as to prevent from energy starvation. More precisely, if the
decision test receives a ‘yes’ answer, the processor is authorized
to be in the active mode since two conditions can be satisfied.
Firstly, the energy level in the energy reservoir is sufficient
enough to execute the active job during at least one time unit.
Secondly, executing the active job will not provoke any energy
starvation for a future occurring job. The decision test may lead
to a ‘no’ answer. The processor has to sleep so that the energy
storage unit recharges sufficiently. Deciding for how long time
recharging should be performed is very flexible. And we may
opt to stop recharging the energy reservoir only when the
reservoir is replenished or the system has no more slack time.

ED-H needs to maintain the following dynamic data for
every job: the slack time and the slack energy.

The slack time of a hard deadline job Ji at current time t is

STJi(t) = di − t − h(t, di) (1)

where h(t, di) is the total processing demand of uncompleted
jobs at t with deadline at or before di. STJi(t) gives the available
processor time after executing uncompleted jobs with deadlines
at or before di. We may then define the slack time of a periodic
task set τ at current time t as follows:

STτ (t) = min
di>t

STJi(t). (2)

The slack time as computed with (2) gives the maximum
continuous processor time that could be made available from
time t while still guaranteeing the deadlines of all the jobs
generated by τ .

Similarly, we define the slack energy of Ji at current time t
by equation 3.

SEJi(t) = E(t) + Ep(t, di) − g(t, di) (3)

where g(t, di) represents the total energy required by jobs on
the time interval [t, di). It concerns both jobs that are ready at t
but not completed at di and future jobs, with deadline less than
or equal to di.

Clearly, SEJi(t) represents the maximum energy surplus that
could be consumed within [t, di) while guaranteeing enough
energy for jobs with deadline less than or equal to di. In other
words, if there exists some job Ji such that SEJi(t) = 0,
executing any other job with a deadline higher than di within
[t, di) will involve energy starvation for Ji.

Hence, the slack energy of the periodic task set τ at current
time t represents the maximum energy surplus that the system
could consume instantaneously at t. The slack energy at t is

SEτ (t) = min
t<di

SEJi(t). (4)

Section B: Computer and Communications Networks and Systems
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TABLE 2. Parameters of periodic tasks
with energy considerations.

Task Ci Ei Di Ti

τ1 2 9 8 9
τ2 2 8 10 12
τ3 2 9 15 18

Finally, the preemption slack energy at the current time t
gives the maximum energy that could be consumed by the
active job while guaranteeing absence of energy starvation for
jobs that may preempt it. Let d be the deadline of this active
job. The preemption slack energy at t is

PSE(t) = min
t<di<d

SEJi(t). (5)

Let us use the following notation:

• t: current time
• Lr(t): list of periodic jobs ready to be processed
• Ar(t): list of aperiodic jobs ready to be processed
• E(t): residual capacity of the energy reservoir
• ST(t): slack time of the periodic task set
• SE(t): slack energy of the periodic task set
• PSE(t): preemption slack energy of the periodic task set

The operations of the ED-H scheduler are as follows.

• Rule 1: The EDF priority order is used to select the future
running job in Lr(t).

• Rule 2: The processor is imperatively idle in [t, t + 1) if
Lr(t) = ∅.

• Rule 3: The processor is imperatively idle in [t, t + 1) if
Lr(t) �= ∅ and either E(t) = 0 or PSE(t) = 0.

• Rule 4: The processor is imperatively busy in [t, t + 1)

if Lr(t) �= ∅ and either E(t) = C or ST(t) = 0
• Rule 5: The processor can equally be idle or busy if

Lr(t) �= ∅, 0 < E(t) < C, ST(t) > 0 and PSE(t) > 0.

The result of optimality of the ED-H scheduler is recalled
in Theorem 3.1. If a task set is schedulable by any algorithm
on a platform composed of given processor, energy harvester
and energy reservoir, then it is schedulable using the ED-H
algorithm on the same platform.

Theorem 3.1. [8] The ED-H scheduling algorithm is optimal.

The following example illustrates the benefits of ED-H under
EDF. Let us consider a task set � of three periodic tasks as
depicted in Table 2.

We assume that the energy storage capacity is C = 7 energy
units at t = 0. For simplicity, we assume that the recharge-
able power is constant along the hyperperiod and equal to 3
(Pp = 3).

FIGURE 4. Tasks scheduled according to ED-H.

Let us schedule �according to ED-H within the first hyper-
period. We verify that � is schedulable because all tasks are
executed within their deadlines and the energy reservoir is full
at the end of the hyperperiod (Fig. 4).

4. HARVESTING-AWARE SLACK STEALING

4.1. Slack analysis under ED-H

The main principle of the slack stealer for aperiodic servicing
with ED-H is to authorize aperiodic job executions as long as
this does not involve a deadline violation for all the jobs gener-
ated by τ . Let us recall that a deadline violation occurs either
because of processing time starvation or energy starvation. This
leads us to consider the system slack at time t as a pair of values.
The first one is the slack time of τ defined as the maximum
time the system could be delayed for executing additional tasks
from t. The second one is the slack energy of τ defined as the
maximum energy surplus that the system could consume at t.

4.2. The slack stealing algorithm

We present here a new slack stealing algorithm that extends
the original one to EH settings. The original slack stealer is
greedy in that sense that the available slack time is always
consumed if there is an aperiodic task ready to run. The basic
idea of the proposed SSP is based on the slack time to execute
the aperiodic tasks as soon as possible and the slack energy to
avoid any energy starvation for periodic tasks. If no aperiodic
task arrives, periodic tasks are operated with ED-H. And if
any aperiodic task arrives, it uses the collected slack time and
slack energy to service aperiodic tasks. The slack stealer can
be viewed as a task that is ready for execution whenever the
aperiodic queue is non-empty. This task is suspended when the
queue is empty. The slack stealer receives the highest priority
whenever there is slack i.e. both slack time and slack energy.
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It receives the lowest priority whenever there is no slack. The
slack stealer selects the aperiodic task in FIFO order.

The scheduling framework can be described by the following
pseudo-code:

Algorithm 1 ED-H with the Slack Stealing server

while True do
if Ar(t) is not empty then

compute ST(t) and SE(t)
if ST(t) > 0 and SE(t) > 0 then

execute the slack stealer
else

execute the ED-H scheduler
end if

else
execute the ED-H scheduler

end if
end while

4.3. Optimality analysis

The property of optimality, that is, the minimization of the
response times of the aperiodic requests, is stated in the fol-
lowing theorems.

Theorem 4.1. All periodic tasks meet their deadlines when
scheduled according to ED-H with the slack stealer for aperi-
odic servicing.

Proof. We prove the theorem by contradiction. Suppose that
a job, say J1, issued from a periodic task misses its deadline at
d1. And d1 is the first deadline that is missed in the schedule.
This violation is due to one of the two following reasons: the
time starvation case is when deadline d1 is missed with the
energy reservoir not exhausted at d1. The energy starvation case
is when the reservoir is exhausted at d1 and J1 is not completed.
As the periodic task set is feasible, the deadline violation
necessarily comes from the execution of aperiodic tasks. Let
t0 be the latest time instant before d1 where an aperiodic task,
say Ap0 executes. By definition of the slack stealer, Ap0 was
authorized to execute within [t0 − 1, t0) because ST(t0−1) > 0
and SE(t0 − 1) > 0. And Ap0 stops execution at t0, because
either the system has no more slack time i.e. ST(t0) = 0 or
the system has no more slack energy i.e. SE(t0) = 0. Let
us examine the two cases. Case 1: ST(t0) = 0 The slack
time, ST(t0) as computed at t0 with (2), gives the maximum
processing time that could be made available from time t0 while
still guaranteeing the deadlines of all the jobs issued from the
periodic tasks ready at or from time t0. The condition ST(t0) =
0 guarantees that if the jobs are executed from time t0 according
to the EDF rule, all periodic jobs can complete by deadlines
even if one of these jobs completes exactly at deadline. This

contradicts that d1 is violated. Case 2: SE(t0) = 0 The slack
energy, SE(t0) as computed at t0 with (4), gives the maximum
energy surplus that the system could consume instantaneously
at t0 while preventing an energy starvation for all the jobs issued
from the periodic tasks ready at or after time t0. From t0 to d1,
no energy is wasted (definition of ED-H) and all the jobs that
execute within [t0, d1) are periodic ones. Consequently, there is
no energy starvation, which contradicts the deadline violation
at d1 with E(d1) = 0. As an example, we consider a set of three
periodic tasks that we studied in the previous section. Suppose
that the first aperiodic job Ap1 has computation time 1, has an
energy consumption 4 energy units and is released at t = 4.
Another aperiodic task with computation time 1, an energy
consumption 4 energy units, is released at t = 14. At time 0,
the residual capacity is maximum since the storage capacity is
full. τ1 is the highest priority task, runs and finishes at time
2 and consumes nine energy units. At time 2, the residual
capacity is given by Emax − E1 + Pp ∗ C1 = 4. Now, τ2 has
the highest priority. It executes completely until time 4 and
consumes eight energy units. The residual capacity equals two
energy units. At time 4, Ap1 is released. System slack time
and system slack energy are then computed at time t=6. Slack
time is given by the minimum of the slack time of all periodic
instances in the system and computed as follows: ST(τ1, 4) =
d1 − t − h(t, d1) = 4, ST(τ2, 4) = d2 − t − h(t, d2) = 6
and ST(τ3, 4) = d3 − t − h(t, d3) = 15 − 4 − 2 = 9. So,
the slack time STτ (4) = min(ST(τ1, 4), ST(τ2, 4), ST(τ3, 4)) =
4 > 0. Slack energy is given by the minimum of the slack
energy of all periodic instances in the system and computed
as follows: SE(τ1, 4) = E(t) + Ep(t, d1) − g(t, d1) = E(4) +
∫ 8

4 Ppdt = 14, SE(τ2, 4) = E(4) + ∫ 10
4 Ppdt = 20 and

SE(τ3, 4) = E(4) + ∫ 15
4 Ppdt − E3 = 26. So, the slack energy

SEτ (4) = min(SE(τ1, 4), SE(τ2, 4), SE(τ3, 4)) = 14 > 0. As
the storage unit is not empty, the slack time is positive (equals
4) and the slack energy is positive (equals 14), J1 is authorized
to execute and to consume a maximum of four energy units.
After its execution, the residual capacity falls at 1. We let
the processor idle in order to recharge the battery. At time
7, the storage unit has fulfilled and the highest priority task
τ3 executes completely according ED-H at time 9 where the
residual capacity equals 4. We continue to schedule the tasks
till time 14 where Ap2 is released. Here, we have to check again
if we abide by the three conditions: (i) the reservoir is not empty
(equals 2), (ii) the slack time is positive and equals to 10 and
(iii) the system slack energy is greater than zero and equals
5. Consequently, Ap2 is authorized to execute immediately.
Again, we continue to schedule the periodic tasks according to
ED-H till the end of the hyperperiod where the energy reservoir
leads to seven energy units (Fig. 5). We note that the aperiodic
tasks Ap1 and Ap2 are executed at the earliest by utilizing the
released idle times and energy surplus collected with regards to
periodic tasks, while periodic tasks are deferred further in time.
In the absence of aperiodic tasks in the system, periodic tasks
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FIGURE 5. Tasks scheduled according to SSP with energy con-
straints.

are scheduled again under ED-H. In this case, the response
times of aperiodic tasks Ap1 and Ap2 are one unit of time for
both, which is a clear evidence of minimizing the aperiodic
responsiveness. �

Theorem 4.2. For any periodic task set scheduled according
to ED-H and a stream of aperiodic tasks processed in FIFO
order, the slack stealing algorithm minimizes the response
time of every aperiodic task, among all algorithms that are
guaranteed to meet all deadlines.

Proof. We prove the theorem by showing that any alternative
algorithm, A, which results in a shorter response time for any
aperiodic task, cannot guarantee that the deadlines of all the
periodic tasks will be met. Let Ap0 be the first aperiodic task
that has a shorter response time when scheduled by algorithm
A. As Ap0 is the first such task, the response times of all
previously serviced soft tasks must be the same as or longer
than when scheduled by the slack stealer. Once at the head of
the queue, Ap0 is serviced by the dynamic slack stealer so long
as SE(t) > 0 and ST(t) > 0. For algorithm A to result in a lower
response time, it must process Ap0 for at least one clock tick
when the slack stealer is unable to do so. We denote the time at
which this occurs by t0. The slack stealer computes two data at
time t0. The first one is the slack time i.e. the spare processing
time that may be stolen. The second one is the slack energy i.e.
the spare energy that may be stolen. One of these two data is
zero at time t0. First case: ST(t0) = 0. Hence, for at least one
job of periodic task, say J1, we have STJ1(t0) = 0. In servicing
aperiodic task Ap0 from t0 to t0 + 1, algorithm A has therefore
lead to STJ1(t0 + 1) = −1 culminating in the impossibility to
complete job J1 by its deadline. Algorithm A cannot therefore
guarantee that the deadline of job J1 will be met. Second case:

SE(t0) = 0. Hence, for at least one job of periodic task, say J1,
we have SEJ1(t0) = 0. That means that any additional energy
consumption between t0 and t0 + 1 leads to SEJ1(t0 + 1) < 0
culminating in insufficient energy to execute job J1 entirely by
its deadline. Algorithm A cannot therefore guarantee that the
deadline of job J1 will be met due to energy starvation. �

5. EXPERIMENTAL RESULTS

In this section we will briefly discuss the results of a simulation
study that was carried out to measure the performance of
the slack stealer server. This evaluation includes two servers
in addition to SSP. Background with Energy Surplus (BES)
executes an aperiodic task only if no periodic task is pending for
execution and the energy reservoir is fully replenished. Under
Background with Energy Preserving (BEP), aperiodic tasks are
executed if there is no awaiting periodic task and the system
slack energy is positive so as to avoid energy starvation. BEP
significantly enhances the performance of BES with additional
overhead.

The total processing load Up incorporates 50% of the peri-
odic processor utilization Upp and 50% of the aperiodic utiliza-
tion Ups. Identically, the total energy load Ue includes 50% of
the periodic energy utilization Uep and 50% of the aperiodic
energy utilization Ues.

In the first set of experiments, performance of the servers is
evaluated as a function of the energy load, for three processing
loads. The second set of experiments is concerned with the
performance trend of SSP server with respect to the reservoir
size.

5.1. Simulation setup

The experiments include a task set composed of n = 20 peri-
odic tasks generated with random periods, computation times
and energy requirements. Periods and computation times are
distributed uniformly in discrete time steps, depending on Upp.

Energy consumption of every task is proportional to its
period and depends on the setting of Uep. Periodic task sets
are assumed to be schedulable in terms of processing time
and energy. Similarly, aperiodic tasks are generated according
to desired values for Ups and Ues by simulating a poisson
aperiodic arrival.

In all experiments, each point in the curves is computed
over 100 runs. The energy reservoir is initially full and the
recharging power Pp is constant.

5.2. Relative performance under various time and energy
conditions

Aperiodic responsiveness is measured for three processing load
profiles: (i) weakly constrained with Up = 20%, (ii) fairly
constrained with Up = 40% and (iii) highly constrained with
Up = 80%. Ue/Pp varies from 5% to 100% in order to show
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FIGURE 6. Average aperiodic response time with respect to Ue/Pp,
for Up=0.2.

FIGURE 7. Average aperiodic response time with respect to Ue/Pp,
for Up=0.4.

the impact of energy availability on aperiodic responsiveness.
Results are reported in Figs 6, 7 and 8, respectively.

As expected, the SSP server outperforms the two background
policies BES and BEP for all configuration settings. It is
worth mentioning that the higher the energy limitation, the
wider the performance of SSP over the background techniques.
BES shows inferior performance for high energy requirements
since aperiodic tasks may execute only when the reservoir
is fully replenished. BES and BEP behave similarly when
renewable energy is greatly available in comparison to energy
requirement.

For the first experiment, (Fig. 6, Up = 20%), we examine
a system that is softly constrained by processor utilization. We
can see that the slack stealer has aperiodic response time that
is at least 25% lower compared to background servers for all
energy conditions.

FIGURE 8. Average aperiodic response time with respect to Ue/Pp,
for Up=0.8.

TABLE 3. Relative performance with different reservoir sizes.

Reservoir capacity Ue/Pp Aperiodic response time

BES BEP SSP

Emin 0.2 2.4 2.1 1.7

0.8 37.4 35.2 26.2

Emin 0.2 2.4 2.1 1.7

0.8 37.4 35.2 26.2

5 ∗ Emin 0.2 2.0 1.7 1.4

0.8 23.0 15.8 14.7

9 ∗ Emin 0.2 1.5 1.3 1.1

0.8 13.4 8.7 6.3

For Up = 80% (Fig. 8), the SSP server benefits from time
slack stealing to optimize the processor utilization and per-
forms much better than background servers. They both behave
poorly even when there is no energy limitation. When the
system is highly constrained both in terms of time and energy,
the performance of the slack stealing-based server approaches
that of the background servers.

5.3. Relative performance with different reservoir sizes

In this set of experiments, we evaluate the performance of
the servers by varying the reservoir size with Emin, 5*Emin
and 9*Emin. Emin is the minimum size of the reservoir that
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guarantees time and energy feasibility, for given Up, Ue and
Pp. Here, we report the results for systems that are no time
constrained i.e. Up = 0.2. In the Table 3, the third, fourth
and fifth columns give the aperiodic responsiveness of BEP,
BES and SSP servers, respectively, for two profiles in terms of
energy constraints. Table 3 shows that the SSP server achieves
significant reduction in aperiodic responsiveness, comparing
with BEP and BES servers under all parameter settings. BEP
achieves low aperiodic response time compared to BES. For
example, when the system uses 20% of available energy with
minimum reservoir size, the response time under SSP is 19%
and 29% lower compared to BEP and BES, respectively. If the
energy requirement is set to 80%, all servers record relatively
high response times; however, the optimal slack stealer still
beats the background servers by a large difference due to
optimal exploitation of slack energy. For each of the three
servers, higher is the size of the reservoir, lower is the normal-
ized aperiodic response time for a given energy setting. If the
reservoir size is set to Emin and the system uses 80% of available
energy, the BES, BEP and SSP servers have aperiodic response
time respectively equal to 37.4, 35.2 and 26.2. When increasing
the reservoir size to 9 ∗ Emin, the response time of BES, BEP
and SSP is respectively reduced by 64%, 75% and 76%. Such
a significant improvement in aperiodic responsiveness comes
from possible immediate service through extra energy that is
available in the reservoir. We can see that the BES algorithm
achieves the lowest reduction in response time over all the
servers. This is because under BES, aperiodic job executions
have to wait for the energy reservoir be fully replenished.

6. RELATED WORK

The critical challenges and opportunities to achieve energy-
efficient communication in mobile cloud computing are
described in [17], [18], [19] and [20]. This research focus on
improving the energy efficiency and reducing data transmission
overhead by storing the data required for computation in the
cloud. Also, they present another approach by dynamically
adjusting application partitioning between the cloud and
mobile devices depending on the conditions of network.

A new method called eTime is presented by Shu et al. It
is designed to prefetch frequently used data while deferring
delay-tolerant data. It takes profit of the timing opportunity
when network connectivity is good [19].

The method was evaluated in 2015 by proposing AppATP, an
Application layer Adaptive Transmission Protocol targeting at
energy-efficient data transfers between mobile devices and the
cloud platform [21]. The same function of eTime is performed
here based on measurements. Measurements show that less
energy is consumed by mobile devices during good connec-
tivity, and vice versa. Managing the use of renewable energy
and the process of leveraging this energy in datacenters has
gained attention. Research challenges in applying renewable
energy in cloud computing datacenters are described from the

following key aspects: generation models and prediction meth-
ods of renewable energy, capacity planning of green datacen-
ters, intra-datacenter workload scheduling and load balancing
across geographically distributed datacenters [22].

Renewable energy aware computing and online optimization
algorithms have been highlighted in datacenters. Niu et al. [23]
proposed an approach called JouleMR and integrate green-
aware and cost-effective job/task scheduling into MapReduce.
Real experiments and simulations show that JouleMR out-
performs Greenhadoof [24] (up to 35% and 28% reduction,
respectively) in terms of brown energy reduction. Furthere-
more, JouleMR outperforms Greenhadoof (up to 30% and 36%
reduction, respectively) in terms of electricity reduction.

Meanwhile, there are also some other works that focus
on how to take advantage of datacenter in cloud computing.
[24] provides a new method, fine-grained differential method
(FGD), to evaluate the impact of power budget violation on
latency-sensitive applications’ performance. Wu et al. pro-
pose also, precise power capping (PPC), to improve power
utilization and capacity of datacenters. Experimental results
demonstrate that FGD and PPC behave more accurately when
compared to other methods and strategies.

7. SUMMARY

Interest in EH has greatly increased over the past decade.
EH technology permits to power small autonomous embed-
ded devices without electric wires and overcomes the energy
limitations of conventional battery-powered systems. In this
paper, we addressed a real-time scheduling problem for a single
processor device with EH capabilities.

We considered both hard deadline periodic tasks and aperi-
odic tasks with no deadline. Typically, aperiodic tasks benefit
from being delivered as early as possible, while periodic tasks
need to be guaranteed to meet their deadlines. Our contribution
is an optimal aperiodic task server based on slack stealing
and adapted to the optimal dynamic priority scheduler ED-
H. The so-called SSP server schedules aperiodic tasks when-
ever the execution of periodic tasks may be safely postponed
without causing missed deadlines. In other terms, SSP makes
any spare processing time and any spare energy available as
soon as possible. Through experiments, we have illustrated
the improvements achieved by the SSP algorithm in aperiodic
responsiveness compared to classical background servicing
under different conditions. In the future, we will extend our
current work to support Dynamic Voltage Frequency Scaling
technology.
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