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Identifying network applications is centric to many network management and security tasks. A large
number of approaches exist in the literature, most of which are based on statistical and machine learning
techniques. For protecting the user privacy, the majority of the existing methods rely on discriminative
traffic attributes at the network and transport layers, such as interaction schemes, packet sizes and inter-
arrival times. In this work, we propose a novel blind, quintuple centric approach by exploring traffic
attributes at the application level without inspecting the payloads. The identification model is based on
the analysis of the first application-layer messages in a flow (quintuple), based on their sizes, directions
and positions in the flow. The underlying idea is that the first messages of a flow usually carry some
application level signaling and data transfer units (command, request, response, etc.) that can be dis-
criminative through their patterns of size and direction. A Gaussian mixture model is proposed to
characterize the applications, based on a study of the common characteristics of application-level pro-
tocols. The blind classifier is based on Markov models with low complexity and reasonable computa-
tional requirements, where the training procedure consists of profiling the target applications separately.
Promising results were obtained for some popular protocols including many peer-to-peer applications.

& 2015 Published by Elsevier Ltd.
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1. Introduction

The ability to identify network applications (Khalife et al., 2014)
is centric to many network management and security tasks,
including quality of service assignment, traffic engineering,
content-dependent pricing, resource allocation, and traffic shap-
ing. With the proliferation of applications, many of them using
different kinds of obfuscation, traditional port based classification
has long become obsolete. Payload based classifiers face the
challenges of obfuscation (Zink and Waldvogel, 2012), encryption
and tunneling (Mujtaba and Parish, 2009), as well as user privacy
rules. Blind classifiers do not inspect the payload and have the
potential ability to deal with these obstacles, at the expense of an
acceptable sacrifice in accuracy. Many of them rely on the analysis
of patterns of traffic observed at the transport layer. The experi-
ence has shown that they are well suited to detect non-standard
applications (e.g. Peer-to-Peer (P2P), Bittorrent, Zink and Wald-
vogel, 2012), which are intrinsically hard to detect due to their
decentralization and dynamicity and especially their use of
obfuscation and private, non-standard techniques.

Numerous methods have been proposed for traffic classification
in the last decade. These methods have different characteristics at
many levels, including the analyzed input, the applied techniques
and the classified target objects (Khalife et al., 2014). Deciding
etwork traffic application i
/dx.doi.org/10.1016/j.jnca.20
upon which classification features to use is a strategic choice for
any traffic classifier. Ideally, the selected traffic features should be
discriminative, immune to network dynamics and obfuscation
techniques, while still protecting the user privacy. Recent surveys
(Khalife et al., 2014) show that most traffic identification methods
use non-payload traffic features, usually extracted at the network
and transport layers of the OSI model (Moore et al., 2015).

Thus, the classification method should better use input features
that are resilient to the diversity in the underlying network tech-
nology, as well as jitter, congestion and other random phenomena.
In this sense, individual packet sizes depend on the network
technology's MTU, and, on the other hand, packet inter-arrival
times are sensitive to jitter. Another aspect of input resilience
concerns traffic obfuscation. For one, the issue of port number
obfuscation is well known and admitted by the research com-
munity; so that classifiers based on port numbers are considered
obsolete. Concerning packet sizes, it was reported in Lacovazzi and
Baiocchi (2010) that some applications use padding to tamper the
packets and evade packet-size based classifiers, and in Wu et al.
(2012) that packet sizes and many other traffic features exhibit
similar distributions through different application protocols (e.g.
packet size distributions of BitTorrent and HTTP). In Yang et al.
(2012), where a Bittorent traffic identifier was presented, the
authors reported that the first three messages of BitTorrent
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handshaking have distinctive size properties, but unfortunately
they are not transmitted in single packets; they are rather divided
into several packets for the purpose of obfuscating packet-size
based classifiers. As a conclusion, the authors recommended the
use of messages instead of packets to detect the size features.

Application-level messages are not totally immune to the
above-mentioned variations and obfuscations. However, among
the commonly used features, they present the highest resilience,
together with the highly desirable property of being derived
directly from the communication of application entities, and as
such, they permit us to look straight to the target, the applications
they are supposed to identify.

Our proposal is based on the use of messages as the basic
feature. The key is to extract the features of these messages while
limiting the sniffing to the transport layer without inspecting the
payloads. This is feasible to high extent from the headers of the
transport layer.

In this work, we present a blind, quintuple centric traffic clas-
sifier analysis based on the features of application-level messages,
as observed at the transport layer. The aim is to classify individual
flows (quintuples) through the analysis of the “message-sequence
patterns”. Although the keyword message designates data units
exchanged at the application layer, we show that the sizes of these
messages can be extracted from layer 4 data headers, without
actually inspecting the payloads of the messages. We then show
by experience that by applying a supervised Bayesian analysis to
the sequence pattern (sizes, directions and positions of the
exchanged messages) we can identify the involved application
with good accuracy.

The remainder of this paper is organized as follows. Section 2
presents the related work in traffic classification. Section 3 pre-
sents the motivation of the proposed method as well as the
method itself, including the proposed model and parameteriza-
tion. The procedures used for training the system, which includes
a normalization of the sizes of the messages and a clustering
algorithm, are described in Section 4. Section 5 presents the
testbed and the experimental results. Section 6 analyzes the
computational complexity of the system. Finally, Section 7 pre-
sents the conclusions of this work.
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
2. Related work

There is a relevant research activity in network traffic classifi-
cation, employing many different approaches. Among them, pay-
load based techniques, namely Deep Packet Inspection (DPI, http://
www.ipoque.com), have the highest classification accuracy, thanks
to their ability to inspect the packets' payloads and match dis-
criminative application signatures. In Lu and Ling (2014) a hybrid
method combining port numbers and packet inspection is sug-
gested. However, packet inspection methods breach the users'
privacy and fail to process encrypted payloads. Additionally, the
need to analyze the whole payloads of every packet in the network
represents a big challenge from the computational point of view.
Though less accurate, the so-called blind methods are preferred in
most environments because they guarantee the users' privacy,
have the potential to classify encrypted communications and
usually require less computational power. Various blind traffic
classification techniques are analyzed and experimented in the
literature, mainly falling in two categories: host based techniques
that classify host activities by analyzing interaction schemes
(Karagiannis et al., 2005); and quintuple-centric techniques that
classify flows based on key features observed at layer 4 (i.e. Zander
et al., 2005; Tabatabaei et al., 2012; Gu and Zhuang, 2010; Zhen-
xiang et al., 2011; Erman et al., 2007; Auld et al., 2007; Crotti et al.,
2007; Yildirim and Radcliffe, 2010; Wang and Parish, 2010; Li et al.,
Please cite this article as: Hajjar A, et al. Network traffic application i
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2008; Dainotti et al., 2008; Huang et al., 2009; JinSong et al.,
2007). These features typically include the flow size and duration,
the packet sizes, and the packet inter-arrival times (Crotti et al.,
2007; Wang and Parish, 2010). Our work falls in the latter cate-
gory, with the distinction of using application-level messages
instead of packets, while ignoring inter-arrival times.

Different Internet applications present different distributions in
their packet sizes (Wu et al., 2012), and many classifiers use this
property. Some use simple statistical techniques (Yildirim and Rad-
cliffe, 2010; Wang and Parish, 2010) such as Probability Density
Functions (PDF) while others use advanced ones such as application
profiling (Wang et al., 2009) or Machine Learning (ML) (Zander et al.,
2005; Tabatabaei et al., 2012; Gu and Zhuang, 2010; Zhenxiang et al.,
2011; Erman et al., 2007; Auld et al., 2007; Li et al., 2008; Dainotti et
al., 2008; Huang et al., 2009; Erman et al., 2007; Moore and Zuev,
2005). Some authors (Zhenxiang et al., 2011; Erman et al., 2007)
suggested Bayesian supervised classifiers, especially naïve ones, as
they are particularly characterized by their low complexity, fast
training and computational efficiency.

Various relevant Machine-Learning (ML) approaches can also
be found in the literature. K-Means (Erman et al., 2007) and
AutoClass in Zander et al. (2005) were reported to identify some
P2P applications with up to 80% of accuracy. Using ANNs in Gu and
Zhuang (2010) and SVMs in Tabatabaei et al. (2012) yielded up to
85% accuracy for detecting a set of P2P applications. KNN algo-
rithm provides 90% of reported accuracy (Huang et al., 2009) for
some known applications including BitTorrent. However, the long
training time and high complexity associated with most super-
vised learning algorithms (e.g. ANN and SVM) and the high storage
and computational resources associated with others (i.e. KNN)
imply a low scalability and a lack of generalization capabilities
regarding the monitored network and the temporary evolution of
the traffic.

On the other hand, despite the high reported accuracy, only a very
limited set of protocols has been checked in these contributions.

Bayesian techniques, as in Zhenxiang et al. (2011), Auld et al.
(2007), and Moore and Zuev (2005), have particular simplicity and
low computational resource requirements (Khalife et al., 2014).
Given an element, characterized by the observation of its features,
these techniques estimate the probability that a class generates
such an observation and label the element with the class that
provides the highest probability. As such, these methods train very
quickly, have low complexity and require reasonable computa-
tional resources. However, the main characteristic of naïve Bayes
classifiers, which is the reason behind their low complexity, is the
assumption that the different features are independent and have
standard Gaussian distributions under the normality assumption.
To overcome some of its limitations, the naïve Bayes model has
been subject to many enhancements when applied to traffic
classification, for example through incorporating neural networks
(Auld et al., 2007) and payload inspection (Zhenxiang et al., 2011).

On another approach, the work in Wang et al. (2009) suggested
identifying applications through the detection of the Longest
Common Subsequence in their packet sizes. Reportedly, the idea
was successful on a specific set of four P2P applications (Maze,
Thunder, PPLive and Feindian). More general results are not
available, and some preliminary experiments carried out at our lab
did not show such packet-size signatures in a significant number
of applications, even with a reduction of the alphabet by rounding
or clustering methods. Although many applications have some
discriminative packet sizes, the majority of application methods
rather generate variable sized packets that are better described
with probability distributions than with discriminative key values.

In this work, our proposed system analyzes the sizes of appli-
cation layer messages using a Bayesian approach to label each flow
from the probabilities provided by a set of Markov models, each
dentification based on message size analysis. Journal of Network
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one associated to a given protocol. To the best of our knowledge,
we are the first to combine the discriminative power of messages
at the application layer with the simplicity and performance of
Markov-based classifiers and the use of Multi-Peak Gaussian dis-
tributions to characterize message sizes. Our classifier analyzes
messages based on their size, their direction and their specific
positions in the flow.

Very few approaches analyzed traffic properties at the appli-
cation layer without inspecting the payloads. Probably the most
related previous works to this one are Waizumi et al. (2011) and
Jaber et al. (2009). In Jaber et al. (2009), packets sizes are analyzed
instead of message sizes. In the training phase, the authors used
K-Means to classify the distributions of the packet sizes and pro-
vide one global cluster model. Then for each target application,
and for each packet position in the flow, a probability was assigned
to each cluster. The classification process examines the packet
sizes as they come and computes accordingly the probability of the
flow (packet-size vector) to be generated by an application. The
flow is then assigned to the application providing the highest
probability in a naïve Bayesian way. In Jaber et al. (2011), the same
authors propose an enhancement via the use of the packet inter-
arrival times as a feature. Although a previous feature analysis by
Erman et al. (2007), using backward greedy search, reported that
“features that have a time component such as duration, inter-
arrival time, and throughput were found not to be useful by the
feature selection algorithm”, the proposal in Jaber et al. (2011) was
to subtract the observed “monitor-to-server” round-trip-time from
the inter-packet times, and as a result, this feature is argued to
become meaningful when observed at approximate positions in
the flow. Although the reported results suggest a potential use-
fulness of the inter-packet time feature, the suggested technique
permits us to cope only with the randomness of host locations.
The authors admittedly neglected the effect of variations in net-
work conditions and jitter, and it is not clear to which extent this
assumption is valid under various network conditions and con-
gestion. Also, the evaluation, both in Waizumi et al. (2011) and
Jaber et al. (2009), was applied to only five standard applications
(HTTP, SMTP, HTTPS, SSH and IMAP). As a main difference, packet
time information is not used in our model. Other key differences of
our work with Jaber et al. (2009) are the use of the message level
sizes instead of packet sizes and the use of a per-application
Gaussian mixture model for clustering the message sizes.

The work presented in Waizumi et al. (2011) has a common
point with this one in the fact that it analyzes the message sizes
for the classification. Despite a different mathematical model, the
key difference is that Waizumi et al. (2011) quantify the message
size in terms of number of packets. Our experience showed that
this coarse-grained quantification overlooks important and
meaningful characteristics of the message. For instance, following
this quantification, all messages involving one sole packet are
considered similar. This does not permit us to identify key mes-
sage sizes, especially those involved in some application level
handshaking and methods, such as SMTP “HELO”, HTTP “GET”, and
FTP “USER”. These methods often generate one-packet messages;
still their expected sizes are different and provide potential
information for the classifier. For these reasons, our quantification
of the message size is fine grained, based on the total number of
bytes in the message and not only the number of packets.

Finally, we should note that a trend is emerging to monitor
message sizes as the main source of information on encrypted
traffic flows. This is noticeable in Pironti (2014) and Iacovazzi and
Baiocchi (2014), and it reveals again the importance of the mes-
sage size feature for flow classification.

At the time this work was conducted, Rizzi et al. (2013) pro-
posed a neuro-fuzzy classifier with low structural complexity, yet
comparable results to SVM. There are two major differences to
Please cite this article as: Hajjar A, et al. Network traffic application i
and Computer Applications (2015), http://dx.doi.org/10.1016/j.jnca.20
note with this work. First, Rizzi et al. (2013) use packet sizes and
inter-arrival times as features, while our method uses message
sizes and ignores the timing data. Second, in the context of net-
work traffic, new applications appear frequently, and a method
based on independently “profiling” the applications is highly
desirable. Our method follows a profiling approach, where the
training consists of profiling each application standalone.

The main contributions in this work are the following:

� Message size-based vectors: the use of message-size parameters
instead of packet-size parameters. Most previous works on
identifying applications from packet lengths used the (non-
empty) packets to generate the parameter vectors, based on
their sizes and direction. Although we use the same notion for
the direction, we followed a different approach for the sizes and
the definitions of the parameter vectors, which removes from
the process-level messages the “noise” induced by layer-4
segmentations, retransmissions and acknowledgments.

� Message size scaling: definition of a normalized message size
measure and a metric distance that is appropriate to their
semantic meanings in network communications.

� Gaussian mixture: the use of a Multi-Peak Gaussian model
(MPG) for estimating the probability density functions of the
vectors' components.

� Profiling: the model is simple and extensible with minimal
effort, as it consists of profiling each application standalone. The
addition of a new application protocol requires rerunning the
training procedure on a sample set to extract its parameters,
without any need to review the other applications' model
parameters and sampled data.

� Testing: the model was tested on a relevant number of appli-
cations mixing standard client-server and P2P protocols. Many
previously reported works were tested on a small and specific
set of application protocols. We tested our method on a dataset
containing about 3 million flows and 18 application protocols,
10 using TCP and 8 using UDP.
3. Flow classification based on initial messages

As previously mentioned, the proposed blind classification
method is built upon message size analysis. The classifier of choice
for our experiments is based on Markov models with a training
procedure that mixes supervised and unsupervised schemes to
produce a model for each application (a model-per-class). The
approach consists in considering the messages' sizes as the pro-
ductions (observations) of a first order Markov model. Thus, each
single state of the model is associated to a single message from an
application. During training, by using randomly sampled data from
each application separately we estimate the probability distribu-
tion functions (PDFs) of the message sizes at given positions in the
flow, with the underlying idea that these messages are generated
from (a priori unknown) “methods” defined in the design of the
application protocol. Thus, the probabilities for each of the
observations are obtained from a multi-Gaussian probability dis-
tribution function which is also dependent on the application.
Finally, when classifying traffic, the class associated to each flow
will be that of the model providing the highest probability. This
probability is evaluated by a naïve Bayes classifier that computes
the Bayesian probability that a messages size sequence was pro-
duced by the model associated to a given application and assigns
the flow to the model (application) that provides the highest
probability score.

Prior to explaining the details of the system, it is worth to mention
that the approach is based on some observations and findings
regarding the characteristics of application protocols. These findings
dentification based on message size analysis. Journal of Network
15.10.003i
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Fig. 1. Diagram of the proposed system.

A. Hajjar et al. / Journal of Network and Computer Applications ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
motivate not only the proposal but also some design decisions made
by the authors and are briefly explained next.

3.1. Common application protocols characteristics

Up to five properties or characteristics of applications protocols
are of interest for the proposed classification system. They are the
following:

� Message size analysis potential for TCP: For TCP-based applica-
tions, message size analysis is expected to outperform packet
size analysis, because the former reflects what is really
exchanged between application processes, while the latter is
affected by transport layer segmentations and retransmissions,
and these can be considered as a source of noise to the classifier.
On the other hand, this assumption is not relevant in UDP-based
applications, because no segmentation or retransmission occurs
at layer-4, and the flowing packets are directly exchanged
between end processes. In this case, the messages are usually
the packets themselves.

� Visibility of message sizes: It is possible to extract message size
information from layer-4 headers, without inspecting the pay-
loads. A method to extract this information will be shown in a
subsequent section.

� Use of methods: Network application protocols are designed
around limited sets of “methods”, data units corresponding to
the semantics of the communication. Any exchanged message is
a data unit belonging to one of these methods. Examples of
these methods are HTTP “GET” and “POST”; SMTP “HELO”, “200
OK” and “USER”; FTP “USER” and “PASS”. As will be shown later,
the proposed classifier does not require prior knowledge of
these methods, but exploits this characteristic of network pro-
tocol designs and applies an unsupervised training process to
estimate the main characteristics of the underlying methods. As
an example, a method that is common to many network
applications is data transfer, which takes the form of a sequence
of full-size packets flowing in the same direction, while empty
“ACK” packets flow in the reverse direction. From the point of
view of a message-based classifier, this sequence consists of a
single large message. On the other hand, many methods are
used in handshaking procedures, and these usually generate
relatively small messages. Our proposal assumes that both
directions of the communications are monitored.

� Distribution of the size of the messages: Each application-level
method generates messages, with a size that can be represented
as a random variable with inherent statistical characteristics. Our
study of many protocols has shown that some methods generate
fixed size messages, while most others have a probability distribu-
tion centered over a mean. The proposed classification method
assumes that these random variables have a normal distribution.
Thus, the method attempts to estimate the essentials of the
Gaussians through an unsupervised learning process, using cluster-
ing. As stated before, this clustering eliminates the need of any prior
knowledge of the list of methods of any protocol.

� Sequence of methods: Application methods occur at typical
positions in network flows. Although this assumption is not
deterministic, it is statistically significant, especially at the
Please cite this article as: Hajjar A, et al. Network traffic application i
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beginning of the flows, in the first exchanged messages which
are often dedicated to some handshaking procedure such as
identification, authentication, and request/reply. Accordingly, a
classifier can exploit this characteristic by examining the first
messages in the flow. An interesting exception occurs in the FTP
protocol, where the handshaking occurs in one flow called “the
main connection”, while the data transfer (upload or download)
occurs on a “secondary connection”, opened specifically for the
data transfer, and identified by a different quintuple than the
main one. No handshaking occurs on the secondary connection,
and the file transfer takes place immediately. As a consequence,
a quintuple centric classifier will observe some flows consisting
of a single large message. As long as FTP is the only application
that produces such a scenario, this is not problematic for the
classifier. However, in the presence of other such applications,
the classifier needs additional information to classify the flows
consisting of a single large message. The needed information
goes beyond the quintuple, mainly by examining the set of
flows between the same two hosts. This leads to a “stateful”
approach, which is a radical modification based on the tracking
of host-to-host flow sets. The idea of analyzing host-to-host
flow sets is open for further exploration, but in the current
status, one-message flows are ignored, and the classifier was
tested on flows that include at least two messages.

3.2. System architecture

The proposed system consists of three main components
(Fig. 1):

� a parameterization module, which obtains the vector Oi of
message sizes, sj, for each flow, Fi:

Oi ¼ 〈s1; s2;…; sL〉 ð1Þ
with L being the selected analysis length specifying the number
of messages to be considered in the parameter vector.

� a model, composed of a set of N Markov models (one per
application to be detected), which obtains the probabilities for
the sequences of observed vectors for each of the potential
applications

fPðOi jλnÞ=1rnrNg ð2Þ
It is worth mentioning that the underlying first-order Markov
model is simple and present the same topology for all the
applications (providing one state for each message position),
but the probability distributions for the message sizes at each
state differ and are specific to each application and

� a decision module, which selects the application the flow
belongs to as that of the model providing the maximum prob-
ability

classðFiÞ ¼ arg max
n

fPðOi jλnÞ=1rnrNg ð3Þ

Therefore, the system uses a Maximum a posteriori probability
(MAP) approach in which all the classes are supposed to be equally
probable a priori.
dentification based on message size analysis. Journal of Network
15.10.003i
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Fig. 2. Extracting application layer messages from a TCP session.

Fig. 3. Model topology for a single application.
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A key aspect in the proposal is the evaluation of the observation
probabilities for each of the sizes. For this, as previously mentioned,
multivariate Gaussians dependent upon the state and the model are
used as probability distribution functions (PDFs). That is, we assume a
discrete time Markov Chain (DTMC) with a state associated to each
position in the flow, and a symbol (message-size) is generated from
each state following a Gaussian Mixture PDF defined over a con-
tinuous space (this will be further illustrated in Fig. 3). Obviously, the
training of the system requires the evaluation of each of the Gaussians
for each of themodels. In other words, profiling an application consists
of estimating its Gaussian mixture at each state, using a set of training
samples.

The details on the operation of each module are described in
the next subsections while we devote a section for the details of
the training procedure.

3.2.1. Features extraction
As previously explained, the first step to classify a flow is the

extraction of the features vector which will be used as the input to
the models. For this, each flow is modeled as a vector of relative
numbers that parameterizes the sequence of messages. Specifi-
cally, each message is modeled by its byte length with a sign that
is positive if the message is generated by the flow's initiator and
negative in the other case.

To compute the message sizes, the TCP header information is taken
into account in order to track any sequence of packets that constitute
one message. In fact, it is known that large data transfers, such as the
transfer of an image, a file, or an HTML document, are decomposed by
TCP into many packets according to the negotiated Maximum Seg-
ment Size (MSS), which derives from the Maximum Transmission Unit
(MTU) of the underlying network. These data transfers can be tracked
by inspecting the layer-4 headers. At the same time, tracking the layer-
4 headers permits us to:

� Remove retransmissions from the flow, which is desirable to
improve the accuracy and focus on the application-level messa-
ging instead of the “brute” packet flow.

� Remove “pure acknowledgment” packets, which are relevant to
layer 4 but have no relevance to the application level messaging.

The number of messages to be considered in the parameter
vector, L, is predefined globally for the system (or a maximum is
fixed). Ideally, L should be as low as possible in order to classify the
flow as soon as possible and to handle short flows. This factor
should be selected during the training of the system.

Therefore, the vector generation method acts as follows. Given
a flow, Fiða-bÞ, initiated by host a and directed to b, a vector, Oi ,
of L signed integer values, corresponding to the message sizes and
their directions with respect to the flow initiator, is built. TCP
handshaking packets and pure ACK packets are removed from the
flow and not considered in the vector. That is,

Oi ¼ 〈s1; s2;…; sL〉; sm ¼
sizeðmessagemÞ if messagemða-bÞ
�sizeðmessagemÞ if messagemðb-aÞ

(

ð4Þ

being messagem the m-th message in the flow. A distinction is
made in the treatment between UDP and TCP flows. Obviously, in
UDP flows, packets correspond to messages and there is no dis-
tinction between the two concepts. However, as depicted in Fig. 2
for TCP flows, as long as the payload data flows in one direction,
the payload sizes are accumulated into the same message (the
same vector component), until one of the following occurs:

� A packet carrying data is detected in the opposite direction.
Please cite this article as: Hajjar A, et al. Network traffic application i
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� A PUSH flag is detected in TCP's header. This flag usually indi-
cates that the sender process has finished its message.
An exception is when the receiver's window is full, but this case
is ignored in our approach.

� A packet that is smaller than the MSS is detected. This heuristic
is based on the assumption that large data transfers use full MSS
packets until the transfer is over or the window is full (the latter
case is ignored as we stated earlier). Therefore, a small packet
indicates the end of a message even if no PUSH is detected.

Regarding the last condition, it is important to note that for the
experimental part in the present work we do not extract the MSS
from the TCP handshaking packets, but we simply set it to 576
bytes, which is the smallest MTU specified in RFC-791. Another
important remark is that in some application protocols, it is pos-
sible that two consecutive messages follow the same direction.
Chatting protocols (i.e. MSN) are obvious examples. This rule
permits us to detect such situations, and makes an improvement
over some previous work (i.e. Waizumi et al., 2011) where all
consecutive non-empty packets flowing in the same direction are
considered as one message.

3.2.2. Sequence evaluation
The proposed method assimilates each application as a pure

left-to-right Markov chain (Fig. 3), where each message in turn is
generated from a state of the model: the message at index 1 cor-
responds to state 1, the message at index 2 corresponds to state 2,
and so on.

A set Λ composed of N models, one per considered application,
is estimated during the training of the system

Λ¼ fλn=1rnrNg ð5Þ

As part of the training of the models, a set of PDFs for the obser-
vations, G, is estimated. Each PDF is associated to a model and a
dentification based on message size analysis. Journal of Network
15.10.003i
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state

G¼ fgðn; lÞ=1rnrN;1r lrLg ð6Þ
Therefore, for an input vector, Oi, the system has to evaluate all the
probabilities of generation of the sequence according to each of
the considered models (applications), as per Eq. (2).

As a pure left-to-right model is assumed, only the observation
probabilities have to be evaluated. Thus, the probability of vector
Oi to be generated from application n can be computed as the
product of the observation probabilities on all indexes

PðOi jλnÞ ¼ ∏
L

l ¼ 1
Pðsl jgðn; lÞÞ ð7Þ

It is worth mentioning that the used modeling assumes that the
sizes of the messages at each state (index) are independent from
each other. That is, the probability of having a certain message size
at position l is independent of the sizes observed at previous
positions l�1; l�2…1.

3.2.3. Classification
A flow, Fi, will be classified as belonging to the application

whose associated model, λapp, provides the maximum probability
for generating the observations from the flow, Oi, that is,

classðFiÞ ¼ arg max
n

fPðλn jOiÞ=1rnrNg ð8Þ

This probability of the model given the sequence of observations is
not directly provided by the set of Markov models, but the
opposite, PðOi jλnÞ, that is, the probability of the sequence given a
model. By applying Bayes' rule,

Pðλn jOiÞ ¼
PðλnÞPðOi jλnÞ

PðOiÞ
ð9Þ

Assuming that all the models are equally probable a priori, the
decision rule can be rewritten as

classðFiÞ ¼ arg max
n

fPðOi jλnÞ=1rnrNg ð10Þ

Although the prior class probability, PðλnÞ, might be predefined
with prior statistics on the network traffic subject to classification,
and hence can be set as a parameter to the method, the proposed
approach and the results that we will show assume no such prior
knowledge. There are three reasons behind this. The first reason is
that prior probabilities may not be stationary, but change over
time as users come and go or engage in different kinds of network
activities. The second reason is that these probabilities are highly
host dependent and also environment specific. The third reason
comes from the way in which the performance of the classifier will
be assessed.

As will be detailed in Section 5, the evaluation of the system is
driven by the “worst case” detection rate. That is, we consider as a
main criterion of performance the worst case detection rate, which
is defined as the percentage of correctly identified flows from the
application that yields the minimum such percentage. Following
this logic, the classifier should not exploit prior statistics by
favoring the predominant applications. This is especially true
when a classifier is evaluated on datasets that have a largely
unbalanced number of elements from each class, as is usual in real
traffic, because favoring the predominant application misleads to
optimistic results. For these reasons the prior probabilities are
ignored and assumed equal for all applications.

In order to evaluate the confidence on the classification of each
individual flow, a probability for the flow belonging to each
application is set as

PðFiAclassðcÞÞ ¼ PðOi jλcÞPN
n ¼ 1 PðOi jλnÞ

ð11Þ
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An ideal systemwill provide a probability value of 1 for the correct
class and 0 for the incorrect classes.

Therefore, the higher the value, the higher the confidence in
the classification provided and a better operation of the system.

Furthermore, this measure could be used to train the system
instead of the most common case in which the training focuses
just in maximizing the production probabilities for the correct
classes (MMI vs. ME training).
4. Training of the system

The method used for training the models plays a fundamental
role in the proposed system. Up to now, its core is a standard
Markov model based recognizer applied to features vectors com-
posed of sizes of the messages. As the topology and transitions of
the Markov model are fixed by design, the parameters to be
obtained by training are the PDFs to be used, G. Therefore, it is in
the choice and estimation of these PDFs where the major novelty
of the proposal resides. For this, as previously mentioned, we
propose to use model and state dependent PDFs based on multi-
peak Gaussians. The fundamentals for using multi-peak Gaussians
instead of simple Gaussians are related to the proposed modeling.
As previously mentioned, each model is supposed to represent a
single application (protocol) behavior. But most of the protocols
can be split into many methods with different behaviors regarding
message sizes. Therefore, the model would be a mix of all the
observed methods from a single application. To account for this,
different Gaussians are associated to each state of the model, as
will be detailed in Section 4.2. Anyway, it is worth to mention that
no differentiation between those methods will be done explicitly
nor for training the system nor for evaluating a sequence.

Estimating one single Gaussian for every model/state would be
done by using just all the samples associated to each model/state
and fitting the parameters. This assignment would be almost tri-
vial as the training samples should be labeled and each observa-
tion is directly associated to a state in the Markov model according
to its position in the sequence. But, as multiple Gaussians are to be
estimated for every state, a method to assign a given observation
to one or many of them is required. For this, the proposed solution
uses a quantization and normalization of message sizes based on a
proposed metric providing a weighting of the belonging of an
observation to different distributions.

4.1. Metric and normalization of message sizes

The protocol methods are encoded inside the payloads, and we
are seeking a blind classification method that does not investigate
these payloads, but exploits potential information from the sizes of
the messages generated by the methods. In general, the size of a
message involved in a method is a random variable.

In order to estimate the probability of a message belonging to a
method, based on its size, we need a way to assess whether two
messages have similar sizes and to which extent. This is the role of
the metric distance that we should define.

A rather naïve way to define the distance between two mes-
sages is to compute the “absolute difference” between their sizes.
The absolute difference is the Euclidean distance between the
messages and, in topological notation, it possesses the “translation
invariant” property:

DEðx; yÞ ¼DEðxþa; yþaÞ ð12Þ
This property is not appropriate for our application, because it does
not fit well with the way the network applications messages are
generated. As an example, consider a data transfer message. The
transferred data might be a file of 20 KB or 30 KB. The absolute
dentification based on message size analysis. Journal of Network
15.10.003i
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byte-difference is 10 KB (big), but still, the two messages have the
same semantic meaning, and likely belong to the same method in
any network application (i.e. transfer of an icon or a small image).
On the other hand, a “HELO” message in SMTP has a typical size of
30 bytes while a HTTP GET request has a typical size of 300 bytes.
The difference here is less than 300 bytes, but it is more meaningful
than the 10 KB difference in the above-mentioned image transfer.
The defined metric distance must point out that the same byte-
difference is more significant between two small messages than
between two big ones. The bigger the message, the less significant
is the byte-difference.

Therefore, any metric distance defined on message sizes must
consider relative differences rather than absolute differences. In
other words, it should not be translation invariant.

In the proposed approach, the message sizes are “normalized”
into the ]-1, 1[space using a transformation that permits us to scale
the difference between two messages, in terms of bytes, relatively
to the sizes of these messages. The transformation, T, is defined as:

TðsÞ : Zn-��1;1½
s-s0 ¼ s

ðBþj sj Þ ð13Þ

where B is a positive constant that corresponds to the middle of
the space, that is, a threshold for considering a message as big or
small. A typical value, as described in the literature, is around 500
bytes. In our experience, any value from 300 to 600 bytes would
not dramatically change the results. Figure 4 graphically shows the
proposed rescaling function.

After rescaling the sizes of the messages, a metric distance, DðÞ,
between two messages with sizes s1 and s2 is derived from their
signs and the absolute difference between their normalized sizes, as:

Dðs1; s2Þ ¼
1 if s1 � s2o0

s1
ðBþj s1 j Þ

� s2
ðBþj s2 j Þ

����
���� otherwise

8><
>: ð14Þ

Notice that the distance between a negative value and a positive one
is set to the maximum of 1. This property is motivated by the fact
that, in network communication, two messages flowing in opposite
directions are semantically different even if both have similar sizes.

The defined distance is a metric distance that verifies the fol-
lowing properties:

Range 8x; yAZn; Dðx; yÞA ½0;1�
Identity 8x; yAZn; Dðx; yÞ ¼ 03x¼ y

Symmetric 8x; yAZn; Dðx; yÞ ¼Dðy; xÞ
Triangular inequality 8x; y; zAZnZn; Dðx; zÞrDðx; yÞþDðy; zÞ
Translation D is not translation invariant ð15Þ
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This metric permits us to assess the degree of similarity
between any pair of messages from the point of view of the
application-level protocols that generate them.

4.2. Gaussian mixture model

Once a distance with the desired properties is set, a clustering
of the observed message sizes is made in order to account for
different methods of a protocol using this distance. In this section,
we propose and justify a model for the Probability Distribution
Functions (PDFs) of the observed message sizes. There are three
observations that drove the derivation of the model; in what fol-
lows we will recall these observations and discuss the derivation
of the model:

� Observation 1 (re-statement): Application layer messages are
generated from methods defined in the design of application-
level protocols. Each observed message is an occurrence of one
of these methods.

� Observation 2: Each method generates similar message sizes
with some reasonable amount of randomness. This similarity is
best expressed in the sense of the distance defined previously,
which is more tolerant toward large messages than small ones.
Accordingly, we assume that the normalized message sizes
generated from a method follow a normal distribution, char-
acterized by a mean μ and a standard deviation σ. Occasionally,
a few methods, usually encountered in signaling schemes (i.e.
bit-torrent handshaking), generate fixed size messages ðσ ¼ 0Þ.

� Observation 3: Given an application and a state, the observed
message may be generated from any of the application's
methods, with some probability for each. For example, the
HTTP-GET-request is generally more frequent than the HTTP-
POST-request; an HTTP-GET-response is not likely to occur as
the first message of an HTTP flow, etc.

Combined, observations 2 and 3 imply that the message-size
distribution is close to a multi-peak Gaussian mixture. For a given
application/state, each peak or cluster represents a method, with
an underlying mean, μ, standard deviation, σ, and a weight, w,
which is the probability of occurrence of the method at the
given state.

4.3. Profiling the applications

A supervised training approach for the proposed modeling
would be based on the enumeration of the methods for each
application protocol. With enough samples, each method would
be analyzed individually and its parameters ðμ;σ;wÞ estimated.
However, this task is likely impractical for several reasons with the
most relevant one being the need for a huge volume of traffic
labeled accordingly. Therefore, an unsupervised approach based
on clustering is designed to capture the essentials of the most
frequently occurring methods.

The aim of the clustering is, given an application, to provide a
means to estimate the number of methods and their statistical
characteristics in an unsupervised way. This proposal is similar to
that in Jaber et al. (2012), in which the authors used K-Means to
find a global set of clusters from the packet sizes coming from all
the applications, and then to assign a probability to each (appli-
cation, state, cluster) triplet.

In our proposed model, a cluster is presumably associated to
each individual method of each application protocol, and the
training uses Expectation Maximization (EM) of a Gaussian mix-
ture. The training process, which extracts the clusters and their
characteristics, is applied to each class separately (a model-per-
class). In a sense, this is a “profiling” approach: the training
dentification based on message size analysis. Journal of Network
15.10.003i
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process applies the profiling routine to each protocol, and extracts
its Gaussian mixture PDF at each state. A few points are important
to note here.

First, this approach is easily extensible to new classes. To add a
new target class to the classifier, it is sufficient to apply the profiling
routine to samples of the new class, without any involvement of the
already profiled classes and their sampled data. This advantage is
particularly important in the context of network traffic classification,
as the number of network applications is usually high, and new
applications appear regularly on the Internet. This contrasts to other
approaches that use global profiles or models, as SVM or neuro-fuzzy
learning, such as Rizzi et al. (2013), which require rerunning the
training process on the entire sample set when a new class is added
to the classifier. This argument justifies the use of a maximum like-
lihood approach, such as EM for estimating the multi-Gaussian PDFs,
though it is arguable whether SVM's “optimal separation” would
yield a significant improvement on the classifier's accuracy. But this
potential increase in the accuracy could be obtained at the cost of
increasing the specificity of the obtained models in relation to the
training dataset, which is not a desirable property.

Finally, the training approach is both supervised and unsu-
pervised, but it should not to be confused with mixed supervised/
unsupervised training. It is supervised in the sense that the flows
are a priori labeled. On the other hand, it is unsupervised in the
sense that, in the profiling phase, there is no prior mapping of
individual messages to the application's methods.

4.4. Clustering and estimation of gaussian mixtures

As previously stated, the aim of clustering is to capture the
essential methods and their characteristics for each application/state
instance. In our experiments, the method used to estimate the clusters
is a combination of K-Means and Dempster's EM. However, any
method for estimating Gaussian mixtures would be appropriate, such
as a greedy learning method (Verbeek et al., 2003).

Given an application, n, and a position in the flow, l, the first
stage of the training uses iterative K-Means to cluster the
message-size samples. As usual, the clustering is applied till a
threshold for the distortion or a previously fixed maximum
number of clusters, K, is reached. The result after the clustering is a
certain number of Kn;loK meaningful clusters. The Kn;l meaningful
clusters from K-Means are used as a starting point for Expectation
Maximization (EM) algorithm. Each cluster is considered as a
cloud around a peak in the multi-peak normal distribution, and
Dempster's EM algorithm (Dempster et al., 1977) is used to esti-
mate for each cluster, Ci;n;l, the centroid, μCi;n;l

, the standard
deviation, σCi;n;l

, and the weight, wCi;n;l
. The aim is to maximize the

overall likelihood of all the observations in the training set.
A certain number of clusters may have all their samples lying

exactly on the centroid, with a null standard deviation. This hap-
pens when some protocol methods have a deterministic message
size, but it also might be the result of random sampling, with
“missing data”. To deal with this phenomenon without losing
generality, and in order to ensure a Bayesian analysis, a minimum
standard deviation, σmin, is predefined. Thus, if for a given cluster,
Ci;n;l, its standard deviation, σCi;n;l

, is lower than σmin, σmin is used as
its standard deviation.

Given cluster Ci;n;l and an observation sl, the probability density
that the observation belongs to this cluster, PCi;n;l

ðslÞ, can be com-
puted as

PCi;n;l
ðslÞ ¼ PðslACi;n;lÞ ¼NcðDðs1;μCi;n;l

ÞÞ

¼ 1
σCi;n;l

ffiffiffiffiffiffi
2π

p � e�0:5 D s1 ;μCi;n;l

� �
=σCi;n;l

h i2

ð16Þ

where NcðÞ is the normal distribution function.
Please cite this article as: Hajjar A, et al. Network traffic application i
and Computer Applications (2015), http://dx.doi.org/10.1016/j.jnca.20
From this, the probability of the observation being generated
from the application n at position l can be evaluated as

Pðsl jgðn; lÞÞ ¼
XKn;l

i ¼ 1

wCi;n;l
� PCi;n;l

ðslÞ ð17Þ

It is worth mentioning that the value space is split into two dis-
joint sub-spaces before applying the clustering: one for the posi-
tive values and the other for the negative ones. This “gap at zero”
means that the sign of any observation is its top-level character-
istic. Thus, two multi-peak Gaussians will be estimated: one for
positive observations and the other for the negative observations.
5. Experimental results and assessment

5.1. Test bed

In order to assess the proposed method and provide experi-
mental results, an appropriate testbed has to be set. For this pur-
pose, the first step should be to prepare traffic captures in which
the flows are labeled according to the application protocol. This set
will be used as the ground truth to train and test the system. The
methodology used to capture and label the traffic dataset is
described next.

5.1.1. Traces and collection methodology
To obtain a significant and real dataset with enough mixture of

application protocols, we captured real traffic at the access link of a
medium-sized institution (Shannon et al., 2014). The collected traces
include traffic from LAN and Wireless LAN users. As depicted in Fig. 5,
end clients consist on fixed PCs and mobile devices. The network
infrastructure is policed by traditional access control devices (firewall,
web filter, etc.) allowing the access for P2P applications.

For training and validation purposes, full packet traces in which
complete flows in both directions were captured. To assess the
longevity of the proposed classifier, traces were captured over
separated periods of time. Specifically, we collected two separate
traces of 3 and 2 days over a span of six months, totaling around
225 GB of real traffic. We also tested our method on a publically
available dataset, namely the m57-patents (http://digitalcorpora.
org/corpora/scenarios/m57-patents-scenario).

5.1.2. The ground truth and data preparation
To build the set of correctly labeled flows that will be used as

the reference (i.e. the “ground truth”) for each dataset, we used a
customized nDPI tool (http://www.ipoque.com). This tool is the
dentification based on message size analysis. Journal of Network
15.10.003i
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open source evolution of OpenDPI after it became commercial. Its
core is a software library designed to classify internet traffic. In its
current version, more than 150 different protocols can be identi-
fied, including some P2P and encrypted application protocols.

In addition to pattern matching, nDPI improves its classification
by using additional techniques such as behavioral patterns, sta-
tistical indicators and entropy.

Each of the flows in the dataset is assigned a vector including
its DPI classification and some useful information from the flow:
the start time, the IP addresses, the layer-4 ports and the layer-4
protocol (TCP or UDP), since our method treats differently the TCP
and the UDP flows. Additionally, the sequence of sizes for the L¼6
first messages in each flow is also obtained, according to the fea-
tures extraction procedure (Section 3.2.1).

One of the requirements of the proposed classifier is to have at
least two messages to classify a flow. Therefore, the flows that
have only one message are ignored. As we stated earlier, this does
occur in some protocols, such as FTP, that use signaling on the
main TCP connection and open other TCP connections for large
data transfers.

A set of independent experiments are to be made with
increasing values for L. For each of these experiments, a random set
of up to 4000 samples per application protocol is chosen from the
dataset as the training set. But, as not all the applications present in
the dataset have enough flows with the required minimum number
of messages, especially when L increases, a strategy has to be
applied to the number of flows in the training set.

Thus, in order to avoid overfitting and unbalancing, the number
of samples from an application in the dataset is, at most, half the
number of available samples with a maximum of 4000 (if more
than 8000 flows are available). On the other hand, and in order to
ensure a proper training, a minimum is also set to include the
application in the experiments. This minimum is set to 500 sam-
ples for TCP applications and 10 for UDP applications. For each
value of L, the applications that do not have enough flows to satisfy
this requirement are ignored in the experiment, which leads for
the selection of up to 18 different applications from the used
dataset. Table 1 lists for each of the usable applications the num-
ber of available flows and the number of samples used for training,
for the case L¼3.

5.2. Experimental results

In this section, we show experimental results obtained during
the training and the classification phases.

5.2.1. Training phase results
As previously mentioned, clusters and PDFs associated with

each application and state of the model are the main outcomes of
the training process.
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Table 1
Number of flows and training samples (for L¼3) for each application in the
experimental dataset.

TCPapp # flows # samples UDPapp # flows # samples

Bittorrent 15,487 4000 iMesh 422 211
iMesh 1090 531 Pando 448 224
MSN 17,723 4000 MSN 813 400
SSL 223,132 4000 NTP 879 400
HTTP 1,581,831 4000 RTP 220 110
Gnutella 2022 1047 Gnutella 158 79
Oscar 1666 833 Stun 1973 400
POP3 5197 2624 NetBios 543 272
FTP 1352 689
SMTP 2041 1061

Please cite this article as: Hajjar A, et al. Network traffic application i
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Figure 6 shows some preliminary results for the clusters
obtained for Bittorrent considering the first six message positions
(L¼6) and a maximum of 12 clusters (K¼12) per state.

As shown in Fig. 6, clusters belonging to the same applications
may not be sparse when independently considering different
message positions and directions (e.g. clusters 5th and 6th for the
up direction for L¼3). This reveals the number of maximum
considered clusters, K, and their associated standard deviations, σ,
as relevant factors for a proper clustering of the data.

Thus, some preliminary experiments were made in order to
evaluate the impact of K and σmin. First, many values of K were
tested. Our experience showed that the method is not highly
sensitive to the choice of K. The typical value of K, which is used in
the experiments, detailed in this paper is K¼20.

On the other hand, the exact value of σmin is not critical, as our
experiment showed that the results are resilient to the choice of
minimal deviation, σmin, in a wide range of values, from 10�12 to
10�6 (the exact significance of these values derives from the
defined metric distance).

As explained in Section 4.2, once the clusters are set, the
parameters for the associated Gaussians are obtained. For illus-
tration purposes Fig. 7 shows the set of PDFs associated with Bit-
torrent and HTTP applications for the second message position
(l¼2).

As shown in Fig. 7, the peaks of the Gaussians (centroids)
together with their deviations partially overlap at some cases. This
is an indicator of the goodness of the obtained clusters and the
appropriateness of a multimodal approach by using multiple
Gaussians. On the other hand, an additional relevant observation is
related to the final target of the system, that is, to the classification
capabilities. Thus, the distributions obtained for Bittorrent and
HTTP are clearly different, which points to the fact that message
sizes at the second position in the flows can discriminate between
both applications. However, as mentioned previously, the dis-
crimination among different applications is made based on a
Markov model which accounts for the different message sizes at
different initial positions in the flow, which is expected to contain
more discriminative information than the individual sizes at a
given position. To further illustrate this idea, Fig. 8 shows appli-
cation message sizes for sample Bittorrent, SSL and Gnutella flows
at different message positions.

As shown in Fig. 8, message sizes for those applications are
similar at particular positions for some of them (e.g. for l¼1 for all
applications, l¼5 for SSL and Gnutella) while being clearly differ-
ent from others. Thus, considering message sizes at different
positions and in both directions can discriminate between both
dentification based on message size analysis. Journal of Network
15.10.003i
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Fig. 7. PDFs associated with (a) Bittorrent and (b) HTTP for L¼2.

Fig. 8. Sequences of application message sizes in both directions for sample Bit-
torrent, SSL and Gnutella flows.

Fig. 9. Average classification recall for TCP and UDP applications.
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applications, as intuitively observed in the graph trends of Fig. 8.
To prove the discriminative power of the proposed model for
different applications, we have run many experiments using dif-
ferent datasets, as detailed next.

5.2.2. Classification phase results
In this section, we show the results of the classification method

on 18 applications, 10 of which use TCP and 8 use UDP.
Various metrics (Khalife et al., 2014) can be used to evaluate

classifiers. Basic ones include the rates of True Positive (TP), True
Negatives (TN), False Positives (FP) and False Negatives (FN). Ide-
ally, a good classifier is the one that maximizes TP and TN rates
(the overall rate of correct classifications) while minimizing FP and
FN rates (the overall rate of incorrect classifications).
Please cite this article as: Hajjar A, et al. Network traffic application i
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To reflect the correlation with FP and FN, combined metrics are
commonly used in multi-classification scenarios: precision (or
accuracy) and recall (or sensitivity). Precision is the ratio of traffic
instances correctly classified as class A to the total number of
instances classified as class A. Recall is the ratio of traffic instances
correctly classified as class A to the number of actual class A
instances.

At this stage, it is important to explain that according to our
experience, the correct assessment of the classification method
should not be based on overall evaluation metrics (e.g. overall
accuracy). This is especially true for datasets that have largely
unbalanced numbers of elements from each class. This is the case
in the considered dataset, which contains an overwhelming per-
centage of HTTP flows. In these situations, assessing a classification
method based on the overall percentage of correctly classified
flows is misleading, because it favors any classifier that is biased
towards the most frequent application. Since the aim of a classifier
is to detect with good percentage all the applications, a better
assessment should be based on the worst case evaluation metric,
that is, to assess the application that exhibits the least such metric.

For these reasons, we choose different metrics (Figs. 9–11) to
evaluate our proposed classification model. These include preci-
sion and recall. We also consider classification results for various
scenarios: Overall applications, TCP and UDP applications, per
application and worst case application.

As a first insight into the results, in Fig. 9 we show the averaged
recall, that is, the average of the recall rates for all the considered
protocols, as a function of the number of observed messages per
flow for TCP and for UDP applications. As shown, the recall
increases up to around 96% for TCP applications when considering
at least L¼3 messages. Also in Fig. 9 we can notice a slight
decrease in the accuracy for L¼6, which needs some analysis. On
the other hand, UDP average recall rates exhibits a bigger perfor-
mance with a maximum of 99.02 for L¼4.

As previously argued, these measures are not the best ones to
assess the performance of the system, as they assume equal rele-
vance to any application and a balanced dataset, which is not the
case. Therefore, we consider the confusion matrices from which
we derive some more meaningful figures. Thus, Table 2 shows the
confusion matrix for TCP both as absolute values and relative to
the number of samples in the test set for each application when
using L¼3.

As can be observed, there exist a non-negligible number of classi-
fication errors (Table 2a), mostly related to HTTP and SSL. Nevertheless,
when the percentages for the number of flows in each class are con-
sidered, the results show high recall rates, with a minimum of 88.92 for
MSN. The results are similar for higher values of L, except minor dif-
ferences for L¼6, as depicted in Fig. 10a), in which maximum,
dentification based on message size analysis. Journal of Network
15.10.003i
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Table 2
Confusion matrices for TCP applications for L¼3: (a) Absolute number of samples and (b) percentage of samples relative to the total number of application samples (row).

Classified As Input class

Bittorrent iMESH MSN SSL HTTP Gnutella Oscar Mail_POP FTP Mail_SMTP

(a)
Bittorrent 15,023 0 108 16 324 1 15 0 0 0
iMESH 0 1085 4 0 0 0 1 0 0 0
MSN 106 0 15,760 92 1727 22 12 1 3 0
SSL 838 0 580 216,551 3715 15 1433 0 0 0
HTTP 19,766 1 19,233 7764 1,527,055 3172 60 0 4780 0
Gnutella 1 0 4 2 104 1911 0 0 0 0
Oscar 0 0 1 5 6 0 1654 0 0 0
Mail_POP 0 0 3 0 9 0 0 5122 63 0
FTP 0 0 0 0 14 1 0 9 1328 0
Mail_SMTP 2 0 0 0 28 0 0 3 13 1995

(b)
Bittorrent 97.00 0.00 0.70 0.10 2.09 0.01 0.10 0.00 0.00 0.00
iMESH 0.00 99.54 0.37 0.00 0.00 0.00 0.09 0.00 0.00 0.00
MSN 0.60 0.00 88.92 0.52 9.74 0.12 0.07 0.01 0.02 0.00
SSL 0.38 0.00 0.26 97.05 1.66 0.01 0.64 0.00 0.00 0.00
HTTP 1.25 0.00 1.22 0.49 96.54 0.20 0.00 0.00 0.30 0.00
Gnutella 0.05 0.00 0.20 0.10 5.14 94.51 0.00 0.00 0.00 0.00
Oscar 0.00 0.00 0.06 0.30 0.36 0.00 99.28 0.00 0.00 0.00
Mail_POP 0.00 0.00 0.06 0.00 0.17 0.00 0.00 98.56 1.21 0.00
FTP 0.00 0.00 0.00 0.00 1.04 0.07 0.00 0.67 98.22 0.00
Mail_SMTP 0.10 0.00 0.00 0.00 1.37 0.00 0.00 0.15 0.64 97.75

Fig. 10. Classification recall as a function of L: (a) TCP and (b) UDP.

A. Hajjar et al. / Journal of Network and Computer Applications ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 11
minimum, overall and dominant (HTTP) recall rates are shown. It is
noticeable with a slight drop in HTTP recall for L¼6 which also induces
a slight decrease in the overall recall for L¼6when comparedwith that
for L¼5. As previously mentioned, the number of training samples
drops with L for some applications, as the number of available flows
with at least this number of messages decreases. For L¼6, there are
three applications with a relatively low number of flows for training
(below 300), when compared with those available for the other
Please cite this article as: Hajjar A, et al. Network traffic application i
and Computer Applications (2015), http://dx.doi.org/10.1016/j.jnca.20
applications, which is clearly degrading the quality of the representa-
tions for these applications and introducing classification errors.

On the other hand, Table 3 shows the confusion matrix for UDP
applications, both as absolute (Table 3a)) and relative (Table 3b)
values. From these tables it is clear that the proposed system
performs even better for UDP applications, with less non-null
values out of the diagonal. The recall rates as a function of L are
shown in Fig. 10b. As in the TCP case, there is a slight drop in the
recall for L¼6, which can be again explained by a bigger decrease
in the training samples from some of the applications. In this case,
it is the number of samples from Gnutella who drops from more
than 200 for L¼2 and L¼3 to below 100 for L¼6, while the
decrease for the other applications is not that big in comparison. It
is relevant to mention that the recall rate reaches up to 98.39%
after L¼3 messages are considered (recall that in the UDP case the
messages are the packets themselves). This suggests that most
UDP flows can be classified very quickly, with this being an early
classification method.

A different insight into the results can be derived from the
precision values. As shown in Fig. 11, despite the high recall rates,
the values for the precision are not high for all the applications.
This is clearly related to the highly unbalanced nature of the
dataset that makes the results for the precision of those less fre-
quent protocols highly sensitive to even small error rates for the
dominant ones.

As a summary, the results show that using the proposed
method it is possible to correctly classify up to around 98% of the
TCP flows and 99% of the UDP sessions by only analyzing the first
3 to 5 messages.

In order to check the specificity of the obtained distributions,
we also tested the models by applying them on the m57-patents
public dataset (http://digitalcorpora.org/corpora/scenarios/m57-
patents-scenario), where we applied the trained distributions
obtained from our own dataset and applied them to detect the
applications available in common with the m57-patents in suffi-
cient number. These are SSL, HTTP and SMTP. Again, the overall
classification results using our proposed model reached 96% of
recall and 85% of precision. It is remarkable that no additional
training nor tuning was made, which points to a good general-
ization of the obtained models.
dentification based on message size analysis. Journal of Network
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Table 3
Confusion matrices for UDP applications for L¼3: (a) Absolute number of samples and (b) percentage of samples relative to the total number of application samples (row).

Classified As Input class

iMESH Pando MSN NTP RTP Gnutella STUN NETBIOS

(a)
iMESH 412 0 0 0 1 0 9 0
Pando 0 448 0 0 0 0 0 0
MSN 0 0 813 0 0 0 0 0
NTP 0 0 0 879 0 0 0 0
RTP 0 0 0 0 218 1 1 0
Gnutella 0 0 0 0 0 156 2 0
STUN 0 0 18 2 3 43 1906 1
NETBIOS 0 0 0 0 7 0 0 536

(b)
iMESH 97.63 0.00 0.00 0.00 0.24 0.00 2.13 0.00
Pando 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
MSN 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00
NTP 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00
RTP 0.00 0.00 0.00 0.00 99.09 0.45 0.45 0.00
Gnutella 0.00 0.00 0.00 0.00 0.00 98.73 1.27 0.00
STUN 0.00 0.00 0.91 0.10 0.15 2.18 96.6 0.05
NETBIOS 0.00 0.00 0.00 0.00 1.29 0.00 0.00 98.71

Fig. 11. Precision and recall values for each application (L¼3): (a) TCP and (b) UDP.
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6. Complexity analysis

As stated earlier, a key advantage of the classifier is that each
application is profiled standalone without any involvement of other
applications, which is ideal for extensibility, and particularly important
in the context of network traffic classification. This is also important
from the point of view of the computational complexity of the pro-
posed method. But, previous to any cost analysis, it is important to
distinguish between the two modes of operation of the system, that is,
between training and classification. As previously mentioned, the
training is made only once for each application, which means that the
Please cite this article as: Hajjar A, et al. Network traffic application i
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cost of training is linear with the number of applications (assuming
equal number of samples in each class) and, more importantly, that it
will not be the critical cost for the real usage of the system. On the
contrary, in the normal usage, each time a flow is to be classified it
should be analyzed by the system, this being the relevant cost for the
effective deployment of the system.

Regarding the cost associated to the training, it is based on the
estimation of Gaussian mixtures after a clustering of the data.
According to Verbeek et al. (2003), the associated computational
complexity is Oðk2 sÞ, with k being the number of clusters and s the
number of samples. According to Eqs. (6) and (17), a multipeak
Gaussian with up to Kn;l peaks is evaluated for each application (n)
and state of the model (l) during the training phase. This means
that Kn;l clusters have to be estimated per application.

Therefore, the complexity of the training phase is OððKLÞ2NsÞ with:

� N the number of considered applications,
� L the number of messages analyzed from each flow,
� K the maximum number of clusters, and
� s the number of sampled flows per application.

The evaluation phase consists simply in evaluating the like-
lihood of the message size vector versus the Gaussian mixtures
and finding the maximum, so the computational complexity to
classify a flow is O(NLK).

Finally, the storage requirements are quite limited, as each flow can
be loaded alone for evaluation. Thus, only the N models need to be
stored. As each model consists on LK Gaussians, each one with
3 parameters, Eqs. (16) and (17), the required storage is Oð3NLKÞ.
7. Conclusions and future work

In this paper a new blind network traffic classifier has been
presented. The classifier uses the sizes of the initial messages
exchanged between the hosts involved in the communication as
inputs. The classification is flow-based and can be considered an
early classification method, as the number of messages required
for the classification can be kept low. Unlike other similar
approaches, this work focuses on the messages, not the packets,
that is, which is considered a differential characteristic of a pro-
tocol is the sequence of sizes of the first messages, not the sizes of
the initially exchanged packets. Although both approaches will be
dentification based on message size analysis. Journal of Network
15.10.003i
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almost the same for protocols with small message sizes, key dif-
ferences may appear due to the potential segmentation of the
messages into many packets.

Another differential characteristic of the proposed system is the use
of multimodal distributions in an attempt to summarize all the pos-
sible methods included in a protocol in a single model. Thus, the
classifier will consist of as many models as different applications it is
able to detect. In this sense, previous similar works considered a
reduced number of protocols (around 4–6 protocols) while in our
proposal up to 18 different applications have been explored.

The experimental results are promising and an improvement over
similar systems has been demonstrated. Nevertheless, more extensive
experiments using bigger datasets are required in order to be able to
improve the system, increasing the confidence and representativeness
of the models and enabling the use of new and better heuristics. This
is not an easy challenge, as the data to be used has to be properly
labeled and has to be big enough. In our experiments, more than
200 GB of labeled data has proven to be insufficient for some protocols
and only 18 of them could be used with some confidence. Another
relevant challenge for the real usage of the system is related to the
completeness of the models and the classification of a flow not
belonging to any of the trained classes. In this case, it is necessary to
develop a rejection mechanism.

We also suggest as candidate for future work the tracking of
host-to-host activities in order to affect accordingly the prior
probabilities of the Bayesian classifier. We expect interesting
improvements from this approach, though at the cost of accep-
table computational overhead.
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