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Abstract: Energy consumption has become a key metric for evaluating how good an embedded system is, alongside more performance

metrics like respecting operation deadlines and speed of execution. Schedulability improvement is no longer the only metric by which

optimality is judged. In fact, energy efficiency is becoming a preferred choice with a fundamental objective to optimize the system′s
lifetime. In this work, we propose an optimal energy efficient scheduling algorithm for aperiodic real-time jobs to reduce CPU energy

consumption. Specifically, we apply the concept of real-time process scheduling to a dynamic voltage and frequency scaling (DVFS)

technique. We address a variant of earliest deadline first (EDF) scheduling algorithm called energy saving-dynamic voltage and

frequency scaling (ES-DVFS) algorithm that is suited to unpredictable future energy production and irregular job arrivals. We prove

that ES-DVFS cannot attain a total value greater than C/̂Sα, where ̂S is the minimum speed of any job and C is the available energy

capacity. We also investigate the implications of having in advance, information about the largest job size and the minimum speed used

for the competitive factor of ES-DVFS. We show that such advance knowledge makes possible the design of semi-on-line algorithm,

ES-DVFS∗∗, that achieved a constant competitive factor of 0.5 which is proved as an optimal competitive factor. The experimental

study demonstrates that substantial energy savings and highest percentage of feasible job sets can be obtained through our solution

that combines EDF and DVFS optimally under the given aperiodic jobs and energy models.

Keywords: Real-time systems, energy efficiency, aperiodic jobs, scheduling, dynamic voltage scaling, low-power systems, embedded

systems.

1 Introduction

The number of embedded systems operated by batteries

is constantly increasing with applications in autonomous

robots, battlefields, industrial process monitoring, mobile

communication systems, and environmental monitoring, to

name but a few. In these systems, time is no longer the only

metric by which performance is judged. In fact, reducing

the energy consumption is of primary importance to prolong

the battery life. Hence, the stringent timing constraints as

well as reducing energy consumption are highly desirable

and sometimes critical features of any embedded computing

system.

Due to increased computational demands, the obvious

target for energy reduction became the processor. Recent

reports show that the processor consumes more than 50%

of the total energy[1].

Dynamic voltage and frequency scaling (DVFS) is a pop-

ular and widely used technique for power management in

real-time embedded systems[2]. With DVFS, one can dy-

namically adjust the voltage and frequency of the CPU to
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reduce energy consumption. As we throttle the proces-

sor, we inevitably sacrifice the execution speed, and con-

sequently an utmost care must be exercised to find the con-

venient slowdown factor that saves the most energy while

avoiding deadline misses.

This paper investigates the on-line job scheduling prob-

lem for real-time embedded systems implemented on a vari-

able voltage processor. The real-time system consists of

aperiodic jobs where we have no prior knowledge about the

characteristics of the future jobs until their release. The

idea behind an on-line scheduling problem is that the pro-

posed algorithm must decide at each time t the job to be

executed but it is not aware of the existence of a job until its

release. As soon as a job is released, the scheduler must be

able to learn all its characteristics including the processing

time, deadline and energy consumption.

To measure the overall system performance, we add a

value for each job if and only if it meets its deadline without

depleting the energy reservoir. It is important to note that

no value is accrued for partial executions of any job. Hence,

if a job set is 100% feasible, then the total system value is

equal to the sum of the worst case execution times (WCET).

The worst-case performance guarantees of on-line algo-

rithms are often derived by comparing it to that of an opti-

mal algorithm that knows the entire input in advance. This

framework, known as competitive analysis, is considered as
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a standard analysis and well-known technique in theoret-

ical computer science[3]. Over the past decade, the re-

search community has made significant progress in analyz-

ing the competitive analysis framework[4, 5]. However, the

competitive analysis of energy-constrained on-line real-time

scheduling has remained an open problem.

The introduction of dynamic voltage and frequency scal-

ing (DVFS) capabilities into embedded systems posits a lot

of questions. Firstly, how to dynamically adapt the concept

of real-time process scheduling to a DVFS technique? Sec-

ondly, how to dynamically adjust the voltage and frequency

of the processor to reduce energy consumption? Thirdly,

how to guarantee a high performance under unpredictable

future energy production and irregular job arrivals?

The remaining of this paper is organized as follows: In

the next section, we summarize the related work. The

system and energy model are introduced in Section 3.

Section 4 formulates the problem and gives some defini-

tions. In Section 5, an optimal scheduling algorithm is

presented with illustrative example and some notations. A

semi-on-line algorithm is introduced in Section 6. Experi-

mental results are discussed in Sections 7 and 8 concludes

the paper.

2 Prior work

Aperiodic jobs are typically used to serve random pro-

cessing requirements, such as operator requests or display-

ing activities[6]. An aperiodic job (or non-periodic job) de-

mands running once. The activation of such a job takes

place during the occurrence of an event that can be ei-

ther external when issued by an environment or internal

when issued from another job. The problem of schedul-

ing aperiodic jobs has been widely considered in literature.

The most well-known strategies are dynamic priority poli-

cies and fixed priority policies. With fixed priority policies,

all jobs of a particular job set have the same priority level.

Rate monotonic scheduling (RM)[7] and deadline monotonic

scheduling (DM)[8] are the most well-known examples of

such policy. On the other hand, with dynamic priority

policies, different jobs of the same job set may have differ-

ent priority levels at runtime. The most known algorithm

among such scheduling approaches is the earliest deadline

first (EDF) algorithm[9]. Scheduling aperiodic jobs under

the EDF algorithm was first investigated in [10, 11]. Our

work is based on dynamic priority scheduling, preemptive

and without resource and precedence constraints.

Recently, the research community posited that power

management is both crucial and necessary for real-time em-

bedded systems. Among the earliest works, Yao et al.[12]

addressed the real-time dynamic voltage scaling (RT-DVS)

problem. That means the problem of minimizing the dy-

namic energy consumption of the processor without violat-

ing timing constraints. For aperiodic jobs, a polynomial

optimal static off-line solution based on speed assignments

that minimizes the energy consumption for the worst-case

workload is evaluated. However, RT-DVS is limited by the

static solution. This drawback was later solved in [13]. Au-

thors proposed heuristics for on-line scheduling of aperiodic

jobs that takes into account the feasibility of periodic re-

quests. Another choice was suggested in [13]. Based on the

absence of aperiodic jobs, the CPU speed must be set to the

processor utilization of the periodic jobs. Still, the optimal-

ity of this choice is not demonstrated. Same authors investi-

gated the non-preemptive power-aware scheduling problem

in [14].

An early technique based on slowing down the processor

whenever there is only one job in the ready queue eligible

for execution was proposed in [15]. A static solution for

periodic jobs with different power characteristics was given

in [16]. The problem of computing job slowdown factors

for periodic jobs where job deadlines are different from the

job period was addressed in [17]. Research efforts in [18, 19]

aimed to benefit from the unused CPU time due to early

completions of some jobs so as to further reduce the CPU

energy by applying the DVS policy.

In [18], authors suggested a cycle-conserving algorithm

that relies on the concept of dynamic utilization. That

means that the processor utilization is updated dynamically

relative to the actual execution times of the ready jobs.

Authors also presented a look-ahead algorithm that uses

low frequencies in presence of slack time and postpone the

use of high frequencies as much as possible. Based on the

same concept, Aydin et al.[19] proposed the generic dynamic

reclaiming Algorithm (GDRA). The GDRA algorithm re-

duces the CPU frequency by transferring the slack of high

priority jobs to low-priority ones.

Another solution to the power management problem in

real-time systems is based on prediction mechanisms. In

[19], authors suggested the aggressive speed adjustment

(AGR) policies. AGR relies on the execution history of

jobs to set the CPU frequency. Later, an on-line schedul-

ing algorithm that makes scheduling decisions based on the

history of already arrived events and the predicted future

arrivals was proposed in [20]. However, using predictions

may lead to potential deadline misses and inefficient energy

management.

With processors bounded between a minimum and max-

imum speeds, authors in [21] presented an on-line DVS

scheduling algorithm that aims to maximize the through-

put and optimize the trade-off between the total flow time

incurred and the energy consumed by jobs. Unfortunately,

this algorithm is dedicated to soft real-time systems and

cannot be adopted for systems with hard real-time con-

straints.

Aiming to reduce the energy consumption of cloud com-

puting platforms while respecting the QoS requirements

of tasks, authors in [22] presented a novel scheduling al-

gorithm, named proactive and reactive scheduling (PRS),

that dynamically exploits proactive and reactive schedul-

ing methods, for scheduling real-time, aperiodic, indepen-

dent tasks. Unlike other approaches that consider deter-

ministic cloud computing environments, authors addressed

a scheduling architecture to mitigate the impact of uncer-
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tainty on the task scheduling quality for a cloud data center.

Three strategies were then proposed to scale up and down

the system′s computing resources according to workload to

reduce energy consumption.

Very recently[23], we presented an energy saving EDF

(ES-EDF) algorithm that is dedicated to independent and

preemptive periodic tasks. ES-EDF is capable of stretching

the worst case execution time of tasks as much as possi-

ble without violating deadlines. We demonstrated that ES-

EDF is optimal in minimizing the energy consumption and

the maximum lateness of the processor for which an upper

bound on the processor energy saving is derived.

3 Model and terminology

3.1 System model

Hereafter, we describe our model that comprises three

components: a processing element with N discrete frequen-

cies, a job model and an energy storage unit.

3.1.1 Job model

We consider a uniprocessor system that executes aperi-

odic jobs. Each one is known by the system at the time

of its arrival. Preemptive scheduling is assumed. We use

Ψ to denote the finite input sequence of jobs that arrive to

the system during its operation. Ψ is denoted as follows:

Ψ = {Ji | 1 ≤ i ≤ n}. Every job Ji is characterized by

(ri, di, ei) where ri and di are the arrival time and the dead-

lines of job Ji, respectively. We consider in this work that

the execution per unit time requires unit energy. For this

sake, we use ei to denote the size of the job Ji. This means

ei indicates both the worst case execution time (WCET)

and energy requirement of Ji. We denote the laxity of the

job Ji by di − (ri + ei).

We assume that Ψ is feasible in the real-time sense.

That means that when the energy constraints are not taken

into consideration, there exists a feasible schedule where all

deadlines in Ψ are respected.

3.1.2 DVFS system configuration

The system is equipped with a DVFS-enabled CPU

where the processing frequency is assumed to be working

with N discrete frequencies f ranging from fmin = f1 ≤
f2 ≤ · · · ≤ fn = fmax

[23]. The power consumption of the

jobs running on the processor and frequency levels are in

a way coupled together. When we change the speed of a

processor, its operating frequency is changed and hence the

power consumption of jobs is proportionately changed to a

value which is supported at that operating frequency.

We use the term slowdown factor Sn as the ratio of

the scheduled speed to the maximum processor speed. Sn

ranges from Smin to 1:

Sn =
fn

fmax
. (1)

We consider in our work that each job has different power

consumption that varies according to its frequencies. Con-

sequently, a job will have maximum power consumption

at its maximum frequency and this power consumption de-

creases as the frequency decreases. Consequently, the power

consumption of a job must be defined as function of the job

index and its corresponding slowdown factor Pi(Ji, Si).

Moreover, the power consumption of the processor at a

slowdown factor S is modeled as a convex function P (S)

where P (S) = aSα. a is considered as a constant charac-

terized by the processor parameters and 2 ≤ α ≤ 3. We

assume in this work that a = 1.

By considering DVFS policy, the energy required to exe-

cute a job depends on the slowdown factor at which the job

is executed. As such, the assumption that the execution per

unit time requires unit energy is no longer valid. For this

sake, a job Ji is now represented as Ji(ri, Ci, di, ei) where

Ci is the worst case execution time at maximum slowdown

factor (Smax = 1). ei is the minimum energy requirement

relative to the minimum slowdown factor that would allow

the job Ji to timely finish its execution without violating

its deadline di.

On DVS-enabled systems, it is assumed that job execu-

tion times scale linearly with CPU frequency. Thus, when

a job Ji is stretched by a slowdown factor Si, its actual

execution time Ci(a) and its energy required will be Ci/Si

and ei(Ji, Si) = Pi(Ji, Si).
Ci
Si

= Sα−1
i Ci, respectively.

We assume that preemption overheads are negligible.

Otherwise, they can be incorporated into the jobs′ worst-

case execution times[24].

3.1.3 Energy storage

Our system relies on an ideal energy storage unit, bat-

tery for example, that has a nominal capacity, namely C,

corresponding to a maximum energy (expressed in Joules

or Watts-hour). The energy level has to remain between

two boundaries Cmin and Cmax with C = Cmax −Cmin. We

denote by C(t), the energy stored in the battery at time t.

At any time, the stored energy is no more than the storage

capacity, that is

C(t) ≤ C ∀ t. (2)

3.2 Terminology

We now recall some definitions for real-time scheduling

concepts that we need throughout the remainder of the pa-

per.

Definition 1. A schedule Γ for Ψ is said to be valid if

the deadlines of all jobs of Ψ are met in Γ, starting with a

storage fully charged.

Definition 2. A system is feasible if there exists at least

one valid schedule for Ψ with the given energy storage unit.

Otherwise, it is infeasible.

Definition 3. A scheduling algorithm A is optimal if it

finds a valid schedule whenever one exists.

Definition 4. A scheduling algorithm A is on-line if it

makes its decisions at run-time.

Definition 5. A scheduling algorithm A is semi on-line

if it is on-line where partial information about the input is

given to the scheduler in advance.

We now introduce a novel terminology which is exclu-
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sively related to energy constrained real-time computing

systems.

Definition 6. A schedule Γ for Ψ is said to be time-valid

if the deadlines of all jobs of Ψ are met in Γ, considering

that ∀ j ∈ {1, · · · , n}, Ej = 0.

Definition 7. A system is said to be time-feasible if

there exists at least one time-valid schedule for Ψ.

Definition 8. A schedule Γ for Ψ is said to be energy-

valid if the deadlines of all jobs of Ψ are met in Γ, consid-

ering that ∀ j ∈ {1, · · · , n}, Cj = 0.

Definition 9. A system is said to be energy-feasible if

there exists at least one energy-valid schedule for Ψ.

4 Problem formulation

Given an aperiodic real-time application of n indepen-

dent aperiodic jobs Ψ = {J1, J2, · · · , Jn} with a release

time, worst-case execution time and deadline, running on a

DVS-enabled platform, and using a single processor during

execution, the problem of determining the CPU slowdown

decisions so as to minimize the overall system energy is con-

sidered. we refer to a set of speed values during the whole

time interval where Ψ is executed as a speed schedule.

Before proceeding, let us state some basic definitions and

existing results that will be instrumental in our analysis.

Definition 10. Let Ψ′(t1, t2) denote the set of jobs ready

to be processed at time t1 and with deadlines at or ear-

lier than t2 and let W (t1, t2) denote the total amount of

workload of jobs in Ψ′(t1, t2). The effective loading fac-

tor h(t1, t2) over an interval [t1, t2] is defined as h(t1, t2) =
W (t1,t2)

t2−t1
Definition 11. Let Ψ′(t1, t2) denote the set of jobs ready

to be processed at time t1 and with deadlines at or ear-

lier than t2 and let I(t1, t2) denote the intensity of jobs in

Ψ′(t1, t2). I(t1, t2) is computed as

I(t1, t2) = max
j∈Ψ′

⎛

⎜

⎝

∑

di≤dj

Ci

dj − (t2 − t1)

⎞

⎟

⎠
. (3)

The most helpful observation in formulating our problem

was presented in [12]. Authors stated the best speed for a

given set of jobs within a defined interval of time.

Theorem 1. Let Ψ′(t1, t2) denote the set of jobs ready

to be processed at time t1 and with deadlines at or earlier

than t2. The speed schedule that employs a constant speed

in [t1, t2] is necessarily an optimal schedule in the sense that

no other schedule consumes less energy to complete the jobs

in time.

Based on the above theorem, we can now prove the fol-

lowing lemma that describes the optimal speed schedule for

a job set Ψ.

Lemma 1. An optimal speed schedule for a job set Ψ

is defined on a set of time intervals in which the proces-

sor maintains a constant speed Si = max(Ij , hk) where hk

and Ij are respectively the workload and intensity of jobs

in [ti, tj ] and each of these intervals [ti, tj ] must start at ti

and with deadlines at or earlier than tj .

Proof. Let Ψ′(ti, tj) denote the set of ready jobs in the

interval of time [ti, tj ] and t0, t1, · · · , tn as the release times

or deadlines of the jobs. Let S1, S2, · · · , SN be the constant

speeds such that

Si = max(Ij , hk) (4)

where

hk =

∑

Ψ′(ti,tj)

Ci

dmax
(5)

and dmax is the maximum deadline in the job set Ψ′(ti, tj).

If the processor executes all the jobs in Ψ′(ti, tj) accord-

ing to Si, then no job will violate its deadline. According to

Theorem 1, the processor will consume less energy to com-

plete the jobs at speeds designated by S1, S2, · · · , SN where

the optimal speed schedule will only change when passing

to other interval. If the processor operates accordingly, all

the jobs in Ψ must be completed by their deadlines and no

other voltage schedules can consume lesser energy.

5 Optimal scheduling algorithm

5.1 Presentation of the scheduler

The intuition behind energy saving-dynamic voltage and

frequency (ES-DVFS) algorithm is to schedule aperiodic

jobs as soon as possible according to earliest deadline first

(EDF) in the presence of variability in dynamic execution

behavior. We use a modified EDF strategy to reduce the

CPU energy consumption by using the dynamic voltage and

frequency selection. ES-DVFS uses an on-line speed reduc-

tion mechanism to minimize the system-wide energy con-

sumption by adapting to the actual workload. ES-DVFS

still guarantees that all deadlines are met.

5.2 Computing the minimum constant
speed for each job

The ES-DVFS scheduler maintains a priority job queue

in which jobs are ordered by the EDF basis. In the be-

ginning, the job queue is empty. Scheduling decisions are

only applied when any of the following events really arrive:

1) Event 1: a new aperiodic job is ready and is added to

the job queue. 2) Event 2: the current job completes its

execution.

We use a dynamic-priority assignment approach where

jobs are executed by a variable speed processor. Hence, the

worst case execution time (WCET) of each job varies de-

pending on the processor slowdown factor under different

speed levels. The challenge is how to essentially build an

optimal speed schedule which leads to the maximum energy

saving. Our technique is based on the assumption that the

parameters of each job are only known when it is released.

ES-DVFS attempts to allocate the maximum possible

amount of slack time based on jobs presented in the ready

job list. When Event 1 occurs, the ES-DVFS updates the

optimal speed schedule of the processor for all the jobs in-

cluding the new one in the job queue and consequently the
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slack time is updated. Further, when an Event 2 occurs,

the completed job is removed from the job queue and we

execute the job with the highest priority following a new

calculated slowdown factor.

When preemption occurs, we implicitly calculate the new

processor speed to the favor of the newly dispatched job. It

is formally proved that the jobs will still meet their dead-

lines if the speed is changed according to the jobs found in

the job queue. This is due to the fact that we keep track of

the remaining execution times of the preempted job in the

queue, and consequently the worst-case workload is still the

same.

In aperiodic real-time system, we are not able to reveal

how jobs actually arrive. Thus, we cannot know the maxi-

mum deadline or the worst case execution time of the jobs

before beginning the schedule. Instead, we would like to

apply on-line DVS scheduling algorithm to make schedul-

ing decisions only when jobs really arrive, i.e., only for jobs

in the job queue.

Based on ES-DVFS, scheduling decisions at time t are as

follows: ES-DVFS selects the job with the earliest deadline

Ji and then adopt the speed such that the job has to be

finished exactly at the release time of the next job. This

means that Ji is executed at speed Si = Ci
di−t

where a job

Ji is associated with worst-case execution time (at Smax)

Ci and absolute deadline di.

However, if we do not consider the maximum intensity of

all the ready jobs, it is possible that the required execution

speed, at some moment t, of the resulting schedule might

miss future deadlines. Therefore, in order to guarantee that

we still meet all the jobs′ deadlines in the ready queue ℘,

the workload hk and the intensity Ij must be verified in

advance by considering the highest speed between hk and

Ij .

In other words, Ji is executed at speed S = max(Ij , hk).

hk is the workload of jobs in the ready queue p. This means

hk =
∑

Ji∈p
Ci

dmax
where dmax is the maximum deadline in

p.

5.3 ES-DVFS algorithm

The ES-DVFS algorithm provides sound dynamic speed

reduction mechanisms. We integrate DVFS techniques with

EDF scheduler for aperiodic real-time applications that po-

tentially use uniprocessor devices during execution. ES-

DVFS provides an exact energy management technique as

function of the CPU frequency in such a way that time con-

straints are still met. Using this framework, the speed of

the jobs ready to be executed is dynamically adjusted on

the fly.

As mentioned above, when a job arrives, it is added to so

called job ready queue p. At any time t, there is a single job

Ji eligible for execution. Thus, before executing this job,

we should use the minimum CPU speed available to stretch

out the WCET as much as possible without violating dead-

lines. Therefore, job Ji must be executed with a speed S

equal to the total workload hk in p.

Note that stretching out a job Ji at a time t with speed

hk may lead to deadline violations. In this case, using the

speed S = max(Ij , hk) will result in a total effective work-

load which is equal to 1. Hence, ES-DVFS can achieve up

to 100 percent CPU utilization where all the jobs are com-

pleted before their deadlines.

The major components of ES-DVFS are: C(t), h(t) and

I(t) where t is the current time, C(t) is the amount of energy

that is currently stored at time t that means the remaining

amount of energy in the energy storage at time t. h(t) and

I(t) are respectively the workload and the intensity of a job

at current time t. Moreover, we use the function execute()

to put the processor to run the ready job with the earliest

deadline.

We describe in Algorithm 1 the pseudo code of the ES-

DVFS scheduler:

Algorithm 1. Energy saving-earliest deadline first (ES-

EDF) algorithm

Require: A Set of N aperiodic jobs Ψ = {Ji|Ji =

(ri, Ci, di, ei), i = 1, · · · , N} according to EDF , current

time t, battery with capacity ranging from Cmax to Cmin,

energy level of the battery C(t).

Require: A processor working with DVFS policy. Power

consumption of the processor at a speed S is P (S) = Sα,

2 ≤ α ≤ 3.

Ensure: ES − EDF Schedule.

1) Initially, the ready job queue p is empty.

2) At t, all ready jobs are added to p.

3) while p �= ∅ do

4) while C(t) ≥ 0 do

5) Select job Ji in p with the highest priority.

6) Calculate the workload hk =
∑

Ji∈p
Ci

dmax

7) Calculate the intensity Ij = maxj∈Ψ′(

∑

di≤dj
Ci

dj−t
)

8) Si = max(Ij , hk)

9) Actual Execution Time Ci(a) = Ci
Si

10) Energy Consumption ei = Ci × Sα−1
i

11) Calculate the remaining energy in the battery at

the end of the execution.

12) C(t + Ci(a)) = C(t) − ei

13) execute()

14) if Job Jj becomes ready then

15) Add Jj to p.

16) if Jj becomes the highest priority job then

17) Update the speed Si.

18) Preempt Ji

19) else

20) Complete execution of Ji

21) Remove job Ji from p.

22) end if

23) end if

24) end while

25) end while

ES-DVFS helps to significantly reduce the processor dy-

namic energy consumption at the cost of increasing job ex-

ecution times.
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5.4 Illustrative example

Consider a job set Ψ = {Ji | 1 ≤ i ≤ 5} with

Ji = (ri, Ci, di). Let J1 = (0, 4, 16), J2 = (4, 3, 12),

J3 = (4, 3, 24), J4 = (0, 4, 14) and J5 = (9, 1, 20).

In line with the previous sections, ei is considered as

the minimum energy consumption relative to the minimum

slowdown factor Si. The power consumption of the proces-

sor at slowdown factor S is modeled as P (S) = aSα. For

sake of simplicity, we assume that a = 1 and α = 2. Conse-

quently, the time and energy needed to execute the job Ji

with processing time Ci at slowdown factor Si are denoted

by Ci
Si

and E(Si) = P (Si)× Ci
Si

= Ci × Si, respectively. We

assume that the battery capacity is C = 11 energy units at

t = 0.

First of all, we have to schedule Ψ according to EDF. We

verify that it is not schedulable since the battery capacity is

equal to zero at t = 11 and consequently the deadline miss

rate is about 40%. In detail: At time t = 0, J1 and J4 are

ready. J4 is the highest priority job and is executed until

t = 4 where C(4) = 7 energy units. At time t = 4, J2 and J3

are released. J2 is the highest priority job and is executed

until t = 7 where C(7) = 4 energy units. J1 is now the

highest priority job and is executed until t = 11 where bat-

tery is fully discharged and consequently the scheduling is

terminated where the deadline miss rate is 40% (Fig. 1). To

increase the efficiency of the processor and increase energy

saving, we have to schedule the same job set Ψ but with

ES-DVFS. We find that Ψ is schedulable since all jobs are

executed without violating deadlines and without getting

out of energy and with energy saving of about 32%.

At time t = 0, J1 and J4 are ready. They are added

to the job queue ℘. J4 is the highest priority job. h4 =
∑

iεΨ′
Ci

dmax
= 1

2
and I4 = max( 1

2
, 2

7
) = 1

2
. Thus J4 is ex-

ecuted at speed S4 = max(I4, h4) = 1
2
. Consequently, the

actual execution time for J4 is equal to C4
S4

= 8 and its

required energy is equal to C4 × S4 = 2.

J4 is now executed until t = 4 where J2 and J3 are

released and added to the queue p. J4 stops its execu-

tion and is preempted by J2 that is executed with speed

S2 = max( 1
2
, 3

4
) = 3

4
till t = 8 where the energy storage

capacity C(t) = 6.75 energy units.

At t = 8, J4 must now resume its execution with speed

S4 = max( 3
8
, 3

4
) = 3

4
. Thus C4(a) = 3 and the required en-

ergy is equal to 3
2
. J4 finishes its execution at time t = 11

and C(t) = 5.25 energy units. It is important to note that

J5 is released at time t = 9 and added to the job queue,

but it does not preempt J4 since its deadline is greater than

that of J4.

J1 is now the highest priority job with a loading factor

h1 = 1
3
. But, its execution time cannot be stretched un-

til t = 23 or else the deadline will be violated. Therefore,

in order to guarantee that J1 will still meet its deadlines

in the ready queue p, the workload h1 must be verified

in advance by considering the highest speed between h1

and I1. As a matter of fact, J1 is executed with speed

S1 = max( 1
3
, 4

5
) = 4

5
until t = 16 where C(t) = 2.05.

At t = 16, J5 is the highest priority job and is executed

with speed S5 = 1
2

till t = 18 where the battery capacity

becomes equal to 1.55 energy units.

Now, J3 is the only job in p. It completes its execution at

time t = 24 where 0.05 energy units are left in the battery.

5.5 Competitive analysis of ES-DVFS

In general, an on-line algorithm is said to be competitive,

if it has a constant competitive factor strictly greater than

zero. In this section, we undertake a preliminary competi-

tive analysis of ES-DVFS that is provably optimal in on-line

energy-constrained settings. The challenge is to investigate

the impact of energy constraints on the competitiveness of

on-line real-time scheduling of aperiodic jobs when there is

sufficient time but no sufficient energy to complete all the

workload.

Before characterizing the competitive analysis theorem,

it is important to start with the proposition below.

Proposition 1. ES-DVFS cannot make a total value

greater than C/̂Sα where ̂S is the minimum used speed.

Proof. The proof of this proposition can be done by two

ways.

First way: Proposition 1 can easily be proved by observ-

ing that under ES-DVFS, the energy consumption of each

time unit in the schedule assuming minimum speed factor

will be Sα, so if the amount of energy is C, the maximum

total value will be C/̂Sα where ̂S is the minimum speed.

Second way: Let Ψ′
ij denote the set of ready jobs in the

Fig. 1 Schedules generated by EDF and ES-DVFS
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interval of time [ti, tj ] and t0, t1, · · · , tn as the release times

or deadlines of the jobs. Let S1, S2, · · · , SN be the slow-

down factors associated with the execution of jobs in each

interval of time [ti, tj ]. Proposition 1 can be proved by ob-

serving that under ES-DVFS, a job Ji depletes ei energy

units when executing a workload of Ci

aS
α−1
i

. Thus, with M

jobs executed, each with its corresponding slowdown factor

Si, we get
∑M

i=1 Ci(Si)
α−1 ≤ C.

Now, let us consider the following inequality that can be

verified using the Cauchy-Schwartz inequality

M
∑

i=1

Ci(Si)
α−1 ≤

M
∑

i=1

Ci

Si
×

M
∑

i=1

(Si)
α. (6)

By making some arrangement and distribution of the

terms, we get

C ≤
M
∑

i=1

Ci

Si
×

M
∑

i=1

(Si)
α. (7)

Consequently, the total value must be less than or equal

to C
∑M

i=1(Si)
α .

Now, let us denote by ̂S the minimum speed used during

the execution of jobs according to ES-DVFS. This implies

that, the upper bound on the total value heavily depends

on ̂S and C.

Consequently, a maximum total value of C
̂Sα

can be made

under ES-DVFS. �
Under ES-DVFS, the pre-knowledge of ̂S is not possi-

ble before the end of the schedule. Hence the competitive

factor must be computed under this assumption.

Theorem 2. ES-DVFS algorithm has competitive factor

of (Smin)
α

Proof. This proof is based on the work done in [25].

Since ̂S is not known in advance, let us consider that a job

J1(0, C

kα−1
1

, C
kα
1

, C) is released at time t = 0. Since J1 is the

only job in the ready queue, it can be executed at frequency

S1 equal to the intensity and workload. Thus S1 = C1
d1

= k1.

ES-DVFS is forced to execute J1 gathering a total value of

( C

kα−1
1

) × ( 1
k1

) = C
kα
1

. Consequently, the competitive factor

is equal to C × kα
1

C
= kα

1 . But k1 must be bounded between

Smin and 1. Hence, ES-EDF can force an upper bound of

(Smin)
α when k1 = Smin and consequently the competitive

factor of ES-DVFS is (Smin)
α. �

6 Semi-on-line algorithm ES-DVFS∗

On-line algorithms, where partial information about the

input is given to the scheduler in advance, are called semi-

on-line algorithms. In our work, the pre-knowledge of ̂S can

potentially improve the competitiveness of the ES-DVFS al-

gorithm.

In the semi-on-line version of ES-DVFS algorithm, same

scheduling steps are performed except that ES-DVFS∗ uses

the knowledge of the minimum speed used, namely ̂S, so as

to enhance the competitive factor.

Theorem 3. ES-DVFS∗ algorithm has competitive fac-

tor not greater than (̂S)α.

Proof. We repeat the proof of theorem 2, but with slight

modifications. Le us consider that a job J1(0, C

kα−1
2

, C
kα
2

, C)

is released at time t = 0. J1 is the only job in the ready

queue, it can be executed at frequency S1 equal to the in-

tensity and workload. Thus S1 = C1
d1

= k2. ES-DVFS∗∗ is

forced to execute J1 gathering a total value of C

kα−1
2

. Since

̂S is known in advance then k2 must be bounded between
̂S and 1. Hence, ES-DVFS∗ can force an upper bound of

(̂S)α when k2 = ̂S. Consequently the competitive factor of

ES-DVFS∗ is (̂S)α. �
ES-DVFS∗ can be further enhanced by considering that

it uses the knowledge of the maximum job size in addition

to ̂S. Let us denote it by ES-DVFS∗∗. ES-DVFS∗∗ is a

variant of ES-DVFS where the maximum job size and ̂S

are known in advance by the input.

First of all we will consider the largest job size for ES-

DVFS that will be later used by ES-DVFS∗∗.
Lemma 2 establishes the competitive factor of ES-DVFS

as a function of the maximum speed used by the scheduler
�S. �

Lemma 2. ES-DVFS has a competitive factor of 0.5 if

the largest job size CL ≤ 1
2
( C

(�S)α−1 ).

Proof. In ES-DVFS, and before executing a job, we

should use the minimum CPU speed available to stretch

out the WCET as much as possible without violating dead-

lines. Therefore, job Ji is executed with a speed Si =

max( Ci
di−t

, hk) if the energy storage unit has sufficient en-

ergy for this execution. Thus, at time t, EC-DVFS executes

a job Jk(t,Ck, dk, ek) if and only if

Cr ≥ (Sk)α−1Ck (8)

where Cr is the remaining energy in the energy storage unit.

Now, let us consider that ES-DVFS schedules n jobs

where the energy storage unit is not fully discharged and

all deadlines are met. At time t, a job Jk is released and

cannot be executed because of energy starvation. This im-

plies that Cr < Ck(Sk)α−1. Denote the minimum size of

any job by ξ units. This means that Cr = Ck(Sk)α−1 − ξ.

Thus, ES-DVFS consumed at least C′ energy units, where

C′ = C − Cr = C − Ck(Sk)α−1 + ξ. (9)

The workload admitted till time t cannot exceed C′
(̂S)α

and consequently, ES-DVFS guarantees a value not greater

than C′
(̂S)α

.

But since CL is the largest job size, then Ck ≤ CL ≤
1
2
( C

(�S)α−1 ). This implies that

C′

(̂S)α
=

C − Ck(Sk)α−1 + ξ

(̂S)α
≥ C − CL(Sk)α−1 + ξ

(̂S)α

C′

(̂S)α
≥

C − ( 1
2
( C

(�S)α−1 )(Sk)α−1) + ξ

(̂S)α
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C′

(̂S)α
≥ C − 1

2
(Sk

�S
)α−1C + ξ

(̂S)α
.

In addition, it is not difficult to see that �S ≥ Sk. This

means Sk
�S

≤ 1. By making some arrangement and distribu-

tion of the terms, we get

C′

(̂S)α
≥ 1

2

(

C

(̂S)α

)

.

Further, ES-DVFS can make a value not greater than
C

(̂S)α
. Hence, the competitive factor of ES-DVFS is equal

to

1
2

C

(̂S)α

C

(̂S)α

=
1

2
.

�
Lemma 3. ES-DVFS∗∗ has a competitive factor of 0.5.

Proof. ES-DVFS∗∗ is the extension of ES-DVFS where

it knows in advance the minimum used speed during job

execution (̂S) and the largest job size (SL). We point out

the competitive analysis of ES-DVFS∗∗ by comparing SL

to 1
2
( C

(�S)α−1 ).

Case 1. If CL ≤ 1
2

C

(�S)α−1 , then we underline that ES-

DVFS∗∗ follows the rules of ES-DVFS as stated in Lemma

2. Consequently, the competitive of ES-DVFS∗∗ is 0.5.

Case 2. If CL > 1
2

C

(�S)α−1 , then we should be ready to

execute the job JL with speed SL = max( CL
dL−t

, hk) that

is beyond ̂S to guarantee that the energy requirement can-

not exceed the energy storage capacity. This means that

ES-DVFS∗∗ attains at least a value of 1
2

C

(̂S)α
. Further, the

optimal on-line algorithm can attain a value not greater

than C

(̂S)α
. Consequently, ES-DVFS∗∗ has a competitive

factor of 0.5.

From the above steps, we can deduce that the competi-

tive factor of ES-DVFS∗∗ is equal to 0.5. �

7 Performance evaluation

In this section, we apply ES-DVFS to several job sets

and compare the performance of our research by two simu-

lation experiments: percentage of feasible job sets and ra-

tio of energy savings. For brevity, we implement ES-DVFS,

EDF and EDF∗. EDF∗ is an enhanced version of EDF in

a way that jobs are slacked by the same slowdown factor

S =
∑

i
Ci

dmax
, where dmax is the largest deadline.

7.1 Experimental setup

The simulation environment consists of a simulation ker-

nel (scheduler) with a number of components involved in

the management and analysis of simulations. The main

components are: task generator, scheduler and CPU.

We implemented the proposed scheduling techniques in a

discrete event simulator using C/C++. To evaluate the ef-

fectiveness of the ES-DVFS algorithm, we consider a job

generator of aperiodic jobs. It accepts as input several

parameters: the number of desired jobs n and processor

load Lp. At the output, we obtain a jobs configuration

Ψ = {Ji(ri, Ci, di, ei) | 1 ≤ i ≤ n}. Jobs are released

at random times that is not necessarily at t = 0. The

execution times of jobs are randomly generated such that

Lp =
∑n

i=1
Ci

dmax
≤ 1.

The results shown are from 100 randomly generated syn-

thetic job sets, each containing 30 jobs with maximum dead-

line equal to 3 360. Deadlines are greater than or equal to

the computation times (Ci ≤ di). We assume that the

power consumption of a processor is a quadratic function

of the processor speed. P (S) = aSα where a is considered

as a constant characterized by the processor parameters and

equal to 1 and α is equal to 2.

After the generation of jobs, the simulator order them

on-line for each scheduling algorithm. Simulation results

are then ordered to excel files to be stored and analyzed.

7.2 Percentage of feasible job sets by vary-
ing the processor load

As mentioned above, when we attempt to dynamically

reduce the CPU speed, we risk exceeding worst-case com-

pletion times of the scheduled jobs and thus violating dead-

lines. In this study, we adopt an approach that takes in-

terest in the percentage of job sets which are feasible with

ES-DVFS, EDF and EDF∗. We consider the settings where

jobs exhibit their worst case workload. The impact of pro-

cessor load on the schemes are shown. We report the re-

sults of this simulation study where the processor load Lp

is scaled from 0.1 till 1.

Under ES-DVFS, we can assure that the completion time

of the currently ready job will not extend beyond its dead-

line. This is because, through dynamic speeds, an utmost

care is taken in order to guarantee the timely completions

of all the jobs in the ready queue. However, this case is not

evident in EDF∗.
At lower load values, ES-DVFS effectively benefits from

the long idle times to prolong the execution periods where

the processor is in continuous use. However, the EDF algo-

rithm runs at full processor speed and does not utilize DVS

technique to save energy and EDF∗ slacks jobs with equal

slowdown factor and consequently not all deadlines will be

met. According to Fig. 2, ES-DVFS exceeds that of EDF∗

and EDF by about 31% and 44% respectively.

As the processor load increases, the percentage of feasi-

ble jobs sets in ES-DVFS decreases. This decrease is due

to the fact that the likelihood of having large idle time is

lower under high processor load. Since the large idle time

adversely affects and limits the reclaiming opportunities,

the performance is degraded, though marginally. Although

ES-DVFS incurs higher deadline miss rate but still exceeds

that of EDF∗ and EDF by about 26% and 29%.

It is important to note that when the processor load is

set to one, the processor is always active and there is no

processor idle time and consequently ES-DVFS, EDF∗ and

EDF will have the same percentage of feasible job sets.
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Fig. 2 Percentage of feasible job sets by varying Lp

7.3 Percentage of feasible job sets by vary-
ing the number of jobs

To examine the effect of the number of jobs on the per-

centage of feasible job sets, we performed simulations by

varying the number of jobs from 5 to 40. The processor

load considered in this simulation is Lp = 0.5. For brevity,

we use the trends similar to that of 30-job systems. Fig. 3

depicts that the percentages do differ from one case to the

other. In particular, we see that the percentage of feasible

jobs sets provides a slightly larger advantage when the num-

ber of jobs increases because there are more opportunities

for reclaiming unused slack-times as well as for aggressively

reducing the CPU speed with increasing number of jobs.

Fig. 3 Percentage of feasible job sets by varying the number of

jobs

Comparing the mechanism of our algorithm to those of

EDF∗ and EDF schemes, we can make the following obser-

vations: when increasing the number of jobs, the percentage

of feasible job sets increases by about 35%, 31% and 23%

respectively for ES-DVFS, EDF∗ and EDF. Moreover, as

the number of jobs increases, the percentage of feasible job

sets for ES-DVFS exceeds that of EDF∗ and EDF by an

average of 23% and 15% respectively.

7.4 Ratio of energy saving

In this section, we measure the energy savings by com-

paring ES-DVFS, EDF∗ and EDF. The simulation method-

ology is parallel to the one described in Section 7.2. In this

experiment, we measure the normalized energy gains, that

means the quantity of energy gains relative to battery ca-

pacity. From the beginning, we observe that there is no en-

ergy saving in EDF scheme since it operates at maximum

processor frequency.

Fig. 4 shows that in decreasing order of performance with

respect to energy savings, the algorithms can be arranged

as: ES-DVFS, EDF∗ and EDF.

At low processor load values, the gain in energy saving

provided by ES-DVFS scheme is significant (about 65%)

and that exceeds EDF∗ by 40%. This is due to the fact

that, when ES-DVFS is run with low processor load, the

CPU will operate at low speed levels, and consequently en-

ergy consumption will decrease.

Fig. 4 Normalized energy saving by varying the number of jobs

Yet, as we increase the processor load and move toward

more active processor levels, the dynamic energy consump-

tion of the workload dominates and hence the benefits of

energy saving decrease. In fact, when the processor load

exceeds 60%, ES-DVFS forced to consume more energy to

avoid deadline violations that can result in low system per-

formance.

8 Conclusions

In this paper, we addressed the problem of determining

the optimal speed schedule for embedded systems which are

implemented on a variable speed processor and employs a

dynamic priority scheme to schedule aperiodic jobs. We

presented an optimal energy efficient scheduling algorithm,

named ES-DVFS, to reduce the CPU energy consumption.

Unlike prior studies, our algorithm provides sound dynamic

speed reduction mechanisms. This means that the speed

of the jobs ready to be executed is dynamically adjusted

on the fly. By deriving the dynamic adjustment properties

from this characterization, we demonstrated that ES-DVFS

cannot attain a total value greater than C/̂Sα. Further, by
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assuming the knowledge of the largest job size and the min-

imum speed used in the schedule, we presented an optimal

semi-on-line algorithm EC-DVFS∗∗, which has a competi-

tive factor of 0.5. To the best of our knowledge, this is the

first work that investigates minimizing energy consumption

under dynamic speed mechanisms.

Our simulation results show that, when the processor

workload is low, ES-DVFS can save up to 65% of the en-

ergy over a modified EDF algorithm (EDF∗), which takes

a constant speed all over the schedule. Our algorithm of-

fers also a consistent advantage over EDF∗ and EDF in the

percentage of feasible job sets. The experiments confirmed

that a “dynamic” slowdown factor that aims to achieve the

best energy saving would be optimal under the different

processor workload and yields the best results.

We hope that this research work will trigger further re-

search efforts. In particular, obtaining the best energy sav-

ing for homogeneous and heterogeneous multiprocessor sys-

tems will be an interesting research direction.
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