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Ambient energy harvesting also known as energy scavenging is the process where energy is obtained from the environment, con-
verted, and stored to power small devices such as wireless sensors. We present a variant of EDF scheduling algorithm called EH-
EDF (Energy Harvesting-Earliest Deadline First). Decisions are taken at run-time without having prior knowledge about the future
energy production and task characteristics. We gauge the performance of EH-EDF by means of simulations in order to show its
benefits. We evaluate and compare several variants of EH-EDF in terms of percentage of feasible task sets. Metrics such as average
length of the idle times are also considered. Simulations tend to demonstrate that no online scheduler can reach optimality in a
real-time energy harvesting environment.

1. Introduction

An algorithm is said to be nonclairvoyant if its scheduling
decisions are taken at run-time with no prior knowledge
about the characteristics of the future tasks [1]. Consequently,
a nonclairvoyant scheduling algorithm is necessarily online.
The problem of online scheduling in real-time systems has
been a fertile ground for theoretical research for many years.

There are many real-time applications concerned with
nonpredictability and consequently with nonclairvoyant
scheduling. In that system, periodic and aperiodic tasks coex-
ist. Periodic tasks typically arise from sensor data or control
loops at regular intervals. In contrast, aperiodic tasks gener-
ally arise from arbitrary events (external interrupts).

When considering real-time systems that take time as the
only limiting factor, it is important to differentiate between
underloaded and overloaded real-time systems. A real-time
system is said to be underloaded if there exists a feasible
schedule for theworkload; that is, the deadlines of all tasks are
met under timing constraints. On the contrary, overloaded
real-time systems do not have a feasible schedule where all
tasks meet their deadlines.Thus, the objective will be to opti-
mize some criteria such as the ratio of deadline success.

In addition, real-time systems can be classified into three
categories: hard, soft, and weakly hard. In hard real-time
systems, all tasksmust be guaranteed to complete within their
deadlines. For soft real-time systems, it is acceptable to miss
some of the deadlines occasionally with additional value for
the system to finish the task, even if it is late. In weakly hard
real-time systems, tasks are allowed to miss some of their
deadlines but there is no associated value if they finish after
the deadline.

Real-time task scheduling determines the order in which
tasks have to be executed. The well-known scheduling algo-
rithm is the Earliest Deadline First (EDF) algorithm [2]. EDF
schedules at each instant of time 𝑡 the ready task whose
deadline is closest to 𝑡. EDF algorithm is optimal in under-
loaded settings; that is, EDF is guaranteed to meet all the task
deadlines for any feasible task set.

Nowadays, energy management is becoming the central
topic of research in real-time systems. In today’s applications,
most real-time embedded systems are powered by batteries.
Therefore, great interest has risen in powering these systems
by renewable energy sources. Many energy harvesting meth-
ods can be used to harvest energy from a controlled or ambi-
ent environment either to power devices directly or to store
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the energy in capacitors or batteries for later use. Radio-
frequency- (RF-) powered systems, solar-powered systems,
wind-powered systems, motional energy harvesting systems,
thermoelectric-powered systems, and piezoelectric conver-
sion systems are examples of such methods.These harvesting
methods support a wide range of applications such as Helio-
mote [3] and Prometheus [4] and can also be used to increase
the lifetime of preexisting devices.

Recently, we addressed the scheduling problem for a
uniprocessor platform that is powered by a renewable energy
storage unit and uses an harvester such as photovoltaic cells.
We presented a scheduler called EDeg (Earliest Deadlinewith
energy guarantee) [5]. The set of tasks is perfectly known
offline as in applications where all the tasks run periodically.
EDeg is clairvoyant since it must know in advance both
the energy source profile and the characteristics of the tasks
(arrival time).

To extend the applicability of EDeg scheduling frame-
work, we need to adapt it to situations where the scheduler
has to take decisions without a priori knowledge of the future.
For real-time energy harvesting applications, a scheduling
algorithm will be nonclairvoyant if, in addition, it ignores
the incoming environmental energy in the future. We may
imagine an application where either the set of tasks or the
future energy profile is known but not both.

We focus here on on-line nonclairvoyant scheduling in
an underloaded real-time energy harvesting system that exe-
cutes aperiodic tasks on a uniprocessor platform.We propose
a scheduling algorithm named Energy Harvesting-Earliest
Deadline First (EH-EDF)which extends thewell-knownEDF
algorithm. We modify EDF so as to count for the limitation
of energy. We benefit from a slack-based method to let the
processor idle and thus to recharge the energy storage unit as
much as possible without violating deadlines.

The remainder of the paper is organized as follows.
In the next section, we summarize the related work. The
system model and necessary terminology are introduced in
Section 3. In Section 4, we present the fundamental concepts
about the slack time. Section 5 describes our scheduling
scheme, EH-EDF, with some indications about practical
issues. Section 6 illustrates the simulation study, whereas the
preliminary results are presented in Section 7. Section 8 con-
cludes the paper and gives some new directions for future
work.

2. Literature Review

Most of the previous researchwork around real-time schedul-
ing disregards energy management or assumes that the
energy is not a limiting factor for task execution.

Energy consideration is now added as a crucial issue
because of the great advances in both hardware and software
technology. This enables system designers to develop large,
complex embedded systems. Such systems consume a large
amount of power and relymainly on a limited energy storage.
Many technical challenges lie ahead in order to make an
energy harvesting system work effectively. Among them is
to either minimize the total energy consumption without

violating deadlines or maximize the performance of hard
energy constrained systems with a fixed energy budget.

With the goal to minimize the total energy consumption,
Pillai and Shin [6] present several novel algorithms for real-
timedynamic voltage scaling called real-timeDVS (RT-DVS).
They modify the OS’s real-time scheduler and task manage-
ment service in order to achieve significant energy savings
without violating deadlines. Later, Aydin et al. [7] address the
problem of power-aware scheduling for periodic tasks with
the aim to reduce CPU energy consumption by the help of
dynamic voltage scaling.The authors propose an offline algo-
rithm to compute the optimal speed, assuming worst-case
workload for each arrival. An online speed reduction mech-
anism is introduced to recompute energy based on the actual
workload.The third component in this solution is to perform
a speculative speed adjustment mechanism based on the
expected workload. Unlike the work in [6], Aydin et al. [8]
take into account the frequency-dependent and -independent
power components as well as the power consumption of com-
ponents other than the CPU when addressing the problem of
minimizing overall energy consumption.

Many other studies address the ways tomaximize the sys-
tem performance of underloaded real-time systems that have
to operate under a fixed energy budget.

Moser et al. [9] give an optimal scheduling algorithm
called LSA for tasks with deadlines, periodic or not, that run
on a monoprocessor device that is powered by a rechargeable
storage unit. They consider that the source power is pre-
dictable but time varying. LSA can be considered as an idling
variant of EDF. The system starts executing a task only if the
task has the earliest deadline among all ready tasks, and the
system can keep on running at the maximum power until the
deadline of the task. In that work, the consumption power
of the computing system is characterized by some maximum
value which implies that for every task, its total energy con-
sumption is directly connected to its execution time through
the constant power of the processing device.Themain disad-
vantage of this work lies in that the LSA algorithm executes
tasks at full power. Moreover, in practice, the total energy
consumed by a task is not necessarily proportional to its exe-
cution time.

In [5], we relax the restrictive hypothesis that links energy
requirement and execution time of tasks.We present a sched-
uling algorithm called EDeg (Earliest Deadline with energy
guarantee). Simply executing tasks according to the EDF
rule either as soon as possible (EDS) or as late as possible
(EDL) may lead to violate some deadlines. EDeg executes
tasks according to the EDF rule with idling phases and relies
on two fundamental concepts, namely, slack time and slack
energy. Before authorizing a task to execute, we must ensure
that the energy availability will permit to execute all future
occurring tasks and the current highest priority one. When
this condition is not verified, the processor has to stay idle
so that the storage unit recharges as much as possible and
as long as all the deadlines can still be met despite execution
postponement. In [10], we prove the efficiency of this sched-
uler through a simulation study. EDeg is clearly clairvoyant
since it needs both the characteristics of the future occurring
tasks and prediction about the future incoming energy.
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Figure 1: Real-time energy harvesting system.

3. System Model and Terminology

3.1. Task Set. We consider a set of aperiodic tasks that execute
on a uniprocessor platform as depicted in Figure 1. Each task
is known by the system at the time of its arrival. An aperiodic
task set can be denoted as follows:Ψ = {𝜏

𝑖
, 𝑖 = 1, . . . , 𝑛}. Every

task 𝜏
𝑖
is characterized by (𝑟

𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, 𝐸
𝑖
), where 𝑟

𝑖
represents

the arrival time of task 𝜏
𝑖
. In the worst case, the execution of

𝜏
𝑖
requires a Worst Case Execution Time (WCET) of 𝐶

𝑖
time

units. And it consumes a Worst Case Energy Consumption
(WCEC) given by 𝐸

𝑖
. We assume that theWCEC of a task has

no relation with itsWCET. A deadline for 𝜏
𝑖
occurs at time𝐷

𝑖

by which the task should complete its execution. We assume
that 0 ≤ 𝐶

𝑖
≤ 𝐷
𝑖
− 𝑟
𝑖
for each 1 ≤ 𝑖 ≤ 𝑛.

Definition 1. The processor load 𝐿
𝑝
of a task set Ψ gives the

processor utilization of Ψ:

𝐿
𝑝
=

𝑛

∑

𝑖=1

𝐶
𝑖

𝐷max
, (1)

where𝐷max represents the longest deadline in Ψ.

Definition 2. The energy load 𝐿
𝑒
, measured in joules/s or

energy unit/time unit, gives the average power consumed by
Ψ:

𝐿
𝑒
=

𝑛

∑

𝑖=1

𝐸
𝑖

𝐷max
. (2)

3.2. Energy Source. We assume that the ambient energy is
harvested and converted into electrical power. We cannot
control the energy source but we can predict the expected
availability with a lower bound on the harvested source
power output, namely,𝑃

𝑟
(𝑡). Generally, the harvested power is

time varying including solar energy which can be assumed
constant on average in a long-term perspective. However, on
a short-termperspective, the harvested power is highly unsta-
ble. This power is then the instantaneous charging rate that
incorporates all losses caused by power conversion and charg-
ing process. Clearly, wemake no assumption about the nature
and dynamics of the energy source, making our approach

more easily implemented in real systemswhere data about the
energy source may not be available beforehand.

3.3. Energy Storage. We consider an ideal energy storage unit
(supercapacitor or battery) of nominal capacity 𝐸, corre-
sponding to amaximum energy (expressed in Joule or energy
unit).The energy level has to remain between two boundaries
𝐸min and 𝐸max with 𝐸 = 𝐸max − 𝐸min. The stored energy
may be used at any time later and does not leak any energy
over time. If the storage is fully charged and we continue to
charge it, energy is wasted. In contrast, if the storage is fully
discharged, no task can be executed.

At some time 𝑡, the stored energy is denoted as 𝐸(𝑡). At
any time, the stored energy is nomore than the storage capac-
ity; that is,

𝐸 (𝑡) < 𝐸 ∀𝑡. (3)

Considering a task set Γ = {𝜏
𝑖
= (𝑟
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, 𝐸
𝑖
) | 𝑖 = 1 . . . 𝑛},

we want to compute the remaining energy in the energy stor-
age unit at time 𝑡. We assume that the energy storage capacity
is equal to 𝐸 energy units at 𝑡 = 0. Let 𝜏

𝑖
be the highest

priority instance ready at time 𝑡 = 0. As tasks are ordered
according to their deadline under EDF, 𝜏

𝑖
must be run

first. The remaining energy in the energy storage unit at time
𝑡 = 𝐶
𝑖
is

𝐸 (𝑡) = 𝐸 + ∫

𝐶𝑖

0

𝑃
𝑟 (𝑡) 𝑑𝑡 − 𝐸𝑖.

(4)

4. Fundamental Concepts

4.1. Slack Time. The slack time of a hard deadline task set at
current time 𝑡 is the length of the longest interval starting at
𝑡 during which the processor can stay idle without leading to
deadline violations.

Let us consider a task setΨ as described previously. LetΨ
be the set of tasks ready to be processed at current time 𝑡. And
let us define the slack time of task 𝜏

𝑗
as the maximum proces-

sor time that can be used after executing 𝜏
𝑗
andhigher priority

tasks. Then the slack time of 𝜏
𝑗
𝜖Ψ
 is computed as follows:

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
𝑗
, 𝑡) = (𝐷

𝑗
− 𝑡) − ∑

𝐷𝑖≤𝐷𝑗

𝐶
𝑖
. (5)

It comes that the slack time of the system at time 𝑡 is
computed from the slack time of all the tasks as follows:

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝑡) = min (𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
𝑗
, 𝑡)) . (6)

4.2. Illustrative Example 1. Consider a task set Ψ = {𝜏
𝑖
, 𝑖 =

1, . . . , 4} with 𝜏
𝑖
= (𝑟
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
). Let 𝜏

1
= (0, 3, 18), 𝜏

2
=

(4, 2, 12), 𝜏
3
= (5, 3, 24), and 𝜏

4
= (0, 4, 16). Let us compute

the slack time at time 6 after executing the tasks according to
EDS from 0 to 6.



4 International Journal of Distributed Sensor Networks

18

4

5

12

24

16
Slack
time

𝜏1

𝜏2

𝜏3

𝜏4

Slack time
Execution of aperiodic tasks according EDF

Figure 2: Computing the slack time at 𝑡 = 6.

𝜏
4
is executed from time 0 to time 4 and 𝜏

2
from time

4 to time 6. At time 6, tasks 𝜏
1
and 𝜏

3
are both ready for

execution. Their slack time and the slack time of the system
are computed according to (5) and (6):

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
1
, 6) = (𝐷

1
− 6) − ∑

𝐷𝑖≤𝐷1

𝐶
𝑖
= (18 − 6) − 3 = 9,

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
3
, 6) = (𝐷

3
− 6) − ∑

𝐷𝑖≤𝐷3

𝐶
𝑖
= (24 − 6) − 6 = 12,

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (6) =min (𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
1
, 6) ,

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
3
, 6)) = 9.

(7)

Figure 2 describes the resulting schedule where the pro-
cessor is let idle from time 6 during a time interval whose
length equals the slack time. We note that 𝜏

1
starts execution

at the latest time while 𝜏
3
has a slack equal to 3 time units

before deadline. This corresponds to the slack time of 𝜏
3

minus the slack time of the system.

4.3. Illustrative Example 2. Consider the same task set as
in Section 4.2. Nevertheless, we add a task 𝜏

5
= (8, 5, 20).

Assume that we execute 𝜏
4
from time 0 to time 4 and then 𝜏

2

from time 4 to time 6.When computing the slack time at time
6, we have two ready tasks 𝜏

1
and 𝜏
3
with 𝑠𝑙𝑎𝑐𝑘⋅𝑡𝑖𝑚𝑒(𝜏

1
, 6) = 9

and 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝜏
3
, 6) = 12. Consequently 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(6) = 9.

𝜏
5
is released at 𝑡 = 8. This leads to the update of

the slack time (Figure 3). First, we note that the slack time
function linearly decreases with time when the processor is
let idle. And the slack time of a task is only affected by tasks
with a lower deadline. As the deadline of 𝜏

3
is lower than

the deadline of the new occurring task 𝜏
5
, we deduce that

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝜏
3
, 8) = 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝜏

3
, 6) − 2 = 10.

As the deadline of 𝜏
1
is greater than the deadline of the

new occurring task 𝜏
5
, the computation of the slack time of

𝜏
1
must be achieved thanks to (5):

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
3
, 8) = (24 − 8) − (3 + 3 + 5) = 5. (8)
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Figure 3: Updating the slack time at 𝑡 = 8.

By the help of (5), we have 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝜏
5
, 8) = 4. Thus

the slack time of the system will be changed to 4 in order to
meet the deadline of the new occurring task (𝜏

5
).

Now, we are prepared to introduce a new online scheduler
specifically adapted to aperiodic tasks in an energy harvesting
context.

5. The EH-EDF Scheduling Algorithm

In this section, the scheduler ignores the future energy pro-
duction and the future arrival times of tasks.

5.1. Presentation of the Scheduler. The intuition behind EH-
EDF algorithm is to schedule aperiodic tasks as soon as pos-
sible according to EDF.When a new task arrives, it is inserted
in the ready task list. When the energy in the storage unit
reveals to be insufficient for executing tasks, the only solution
consists in postponing them as much as possible. We have to
perform the computation of the slack time of the system from
the ready task list. The scheduler lets the processor idle until
the energy storage unit replenishes or the slack time becomes
zero.

The slack time is updated whenever a new task arrives
even in the recharging phase. The processor continues idling
as long as the system has slack.

We propose the so-called Energy Harvesting-Earliest
Deadline First (EH-EDF) algorithm following the idea
described previously.

Themajor components of the EH-EDF algorithm are 𝐸(𝑡)
and 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝑡). 𝐸(𝑡) is the residual capacity of the storage
unit at time 𝑡 which is the energy that is currently stored
and 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝑡) is the slack time of the system at current
time 𝑡. PENDING is a Boolean which equals true whenever
there is at least one instance in the ready list queue. We use
the function wait() to put the processor in sleep mode and
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Input:A Set of aperiodic Tasks Ψ = {𝜏
𝑖
| 𝜏
𝑖
= (𝑟
𝑖
, 𝐶
𝑖
, 𝐸
𝑖
, 𝐷
𝑖
) 𝑖 = 1, . . . , 𝑛}

Scheduled according to 𝐸𝐷𝐹, current time 𝑡, battery with capacity ranging from 𝐸max to 𝐸min,
energy level of the battery 𝐸(𝑡), source power 𝑃

𝑟
(𝑡).

Output:EH-EDF Schedule.
(1) while “(1)” do
(2) while “PENDING=true” do
(3) while “(𝐸(𝑡) > 𝐸min)” do
(4) execute()
(5) end “while
(6) while” (𝐸(𝑡) < 𝐸max and 𝑆𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝑡) > 0) “do
(7) wait()
(8) end” while
(9) end “while
(10) while” PENDING=false “do
(11) wait()
(12) end” while
(13) end “while

Algorithm 1: Energy Harvesting-Earliest Deadline First (EH-EDF).

function execute() to put the processor in active mode and
schedule the tasks according to EDF.

The framework of the EH-EDF scheduling algorithm is as
Algorithm 1.

From the EH-EDF framework, we notice that tasks do
not run after 𝐸min. EH-EDF charges the energy storage to
the maximum level, provided there is sufficient slack time
and the storage unit is not fully replenished. Such condition
can be easily detected through an interrupt mechanism and
adequate circuitry between the storage unit and the process-
ing device. The slack time is computed when entering the
wait state and decremented at each time instant.

Therefore, wewaste recharging power onlywhen there are
no pending tasks in the ready list and the storage unit is full.

5.2. Illustrative Example. Consider a task set Ψ with five
aperiodic tasks as in the previous example such that
Ψ = {𝜏

𝑖
| 1 ≤ 𝑖 ≤ 5}, where 𝜏

𝑖
= (𝑟
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, 𝐸
𝑖
). Let 𝜏

1
=

(0, 3, 18, 9), 𝜏
2

= (4, 2, 12, 12), 𝜏
3

= (5, 3, 24, 7), 𝜏
4

=

(0, 4, 16, 10), and 𝜏
5
= (8, 3, 20, 10).The energy storage capac-

ity is assumed to be equal to 10 energy units. For sake of sim-
plicity, the rechargeable power, 𝑃

𝑟
, is constant along time and

equals 2.
Ψ is temporally feasible; that is, all deadlines can be met

when abstracting for energy. But Ψ reveals to be not feasible
with energy limitations since the storage unit empties at time
6.

When applying EH-EDF (Figure 4) toΨ, the energy stor-
age capacity empties at 𝑡 = 6. The energy storage recharges as
much as possible. The recharging time is computed from the
current slack time in order to still guarantee all the deadlines
while avoiding energy overflow.

In details, the energy storage is full at time 0. The highest
priority task𝑇

4
executes until time 4 when the energy storage

capacity is given by the following formula: 𝐸(4) = 𝐸max−𝐸1+
𝑃
𝑟
𝐶
1
= 8 energy units.
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Figure 4: Example on EH-EDF scheduling.

𝑇
2
is ready at time 4. As the highest priority task, it

executes until time 6 when the energy storage empties. The
processor has to remain idle as long as the storage has not ful-
filled and the slack time is not zero. According to (5), the slack
time of all released tasks and the slack time of the system are
computed.
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𝑇
1
and 𝑇

3
are released at time 6. The slack time of 𝑇

1
and

𝑇
3
is equal to 9 and 15, respectively. As 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(6) = 9,

the processor has to stay idle until time 15 for recharging the
energy storage unit.

𝑇
5
is released at time 8. As the slack time for 𝑇

5
is 6,

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(8) = 6. The battery is recharged until time 11
when it is full. Thus, we stop recharging at time 11 to avoid
wasting energy.

At time 11, the energy storage is equal to 10 energy units,
and 𝑇

1
has the highest priority. It executes until time 14 and

the remaining energy 𝐸(14) = 7 energy units. 𝑇
5
is then

the highest priority task and executes until time 17 when the
energy level equals 3 energy units.

At time 17,𝑇
3
executes until time 20where the energy level

equals 2 energy units. The processor has no task to execute
and remains idle until time 24 where the energy storage is
full again.

In contrast to EDF, EH-EDF feasibly schedules the task set
Ψ given the characteristics of the storage unit and the power
source profile.

6. Simulation Study

This section describes experiments that have been conducted
to evaluate the EnergyHarvesting-EDF (EH-EDF) algorithm.
To measure the effectiveness of EH-EDF, we develop a
discrete-event simulation in C/C++. We report a perfor-
mance analysis which consists of five experiments.

The simulation environment consists of a simulation ker-
nel (scheduler) with a number of components involved in the
management and analysis of simulations. The main compo-
nents are the task generator, the scheduler, and the CPU.

The generator of aperiodic tasks has been designed to
accept the following input parameters: the number of desired
tasks 𝑛, the processor load 𝐿

𝑝
, the energy load 𝐿

𝑒
, and

the recharging power 𝑃
𝑟
(𝑡). The output is a task set Ψ =

{𝜏
𝑖
(𝑟
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, 𝐸
𝑖
), 𝑖 = 1 𝑡𝑜 𝑛}. The execution time of tasks

is randomly generated such that 𝐿
𝑝
= ∑
𝑛

𝑖=1
(𝐶
𝑖
/𝐷max) ≤ 1.

Moreover, the energy consumption of tasks is randomly
generated from the energy load factor such that 𝐿

𝑒
=

∑
𝑛

𝑖=1
(𝐸
𝑖
/𝐷max) ≤ 𝑃

𝑟
. Deadlines are greater than or equal to

the computation times.
Simulation results are then ordered to excel files to be

stored and analyzed.

6.1. Formal Definition of Scheduling Strategies. For the sake of
comparison, we implement five energy harvesting scheduling
policies where aperiodic tasks execute as soon as possible
according to 𝐸𝐷𝐹.

EH-EDF: when the battery empties, the processor is
put into sleep mode until the battery replenishes or
the slack time becomes zero.
EH-EDF𝑥: when the battery empties, the processor is
put into sleep mode for 𝑥 units of time where 𝑥 is an
input of the scheduler.

EH-EDF1: when the battery empties, the processor is
put into sleep mode until the energy level reaches a
threshold value, namely, 𝐸th, given as an input of the
scheduler.

EH-EDF2: when the battery empties, the processor is
put into sleep mode until the slack time becomes zero
regardless of the energy level.

EH-EDF3: there are two threshold parameters,
namely, 𝐸thmin and 𝐸thmax. when the energy level
reaches𝐸thmin, the system is put into sleepmode until
either the slack time be null or the energy level be
𝐸thmax.

6.2. Measurement Support

6.2.1. Aperiodic Task Sets Generation. Weuse a simulator that
generates 50 tasks with maximum deadline equal to 3360.
The worst-case computation times are set according to the
processor load𝐿

𝑝
, where𝐿

𝑝
can be 30%, 60%, or 90%.Results

presented in this section are averages over groups of fifty task
sets.

6.2.2. Energy Parameters Generation. The energy consump-
tions of tasks (WCEC) are randomly generated but con-
strained by the energy load 𝐿

𝑒
. All tasks are assumed to lin-

early consume their energy budget over time. In addition, all
tasks are dischargeable. This means that 𝐸

𝑖
/𝐶
𝑖
is greater than

𝑃
𝑟
(𝑡) for all 𝑡. The rechargeable power is constant along time

during the execution of a task and varies fromone task execu-
tion to another. A randomgenerator enables us to produce for
every quantum of time a power energy profile withminimum
value 10 and a maximum value here 35.

6.2.3. Simulations Description. We start the simulation with
a battery fully recharged (𝐸(0) = 𝐸max). When a deadline is
missed, we discard the task and update the slack time. The
simulation is repeated for 50 task sets for a given processor
and energy utilization ratio. For a fair comparison of the pre-
vious strategies, all simulations are performedunder the same
conditions. We report the performance analysis that consists
of the following measures:

(i) percentage of feasible task sets;

(ii) the impact of the slack time and energy storage
capacity on the performance of EH-EDF;

(iii) average idle time corresponding to recharging phases
of the energy storage;

(iv) energy storage low level.

The above measurements are compared under different
scenarios for the five energy harvesting scheduling policies
stated previously. These policies cover all the possibilities of
the EH-EDF algorithm. We measure the impact of the slack
time and energy storage capacity on the performance of EH-
EDF, EH-EDF𝑥, and EH-EDF1.
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Figure 5: Effects of parameter 𝑥 on EH-EDF𝑥 (𝐸max = 100).

7. Preliminary Results

7.1. Impact of Parameter 𝑥 on EH-EDF𝑥. In this section, we
experiment on the effect of the slack time (𝑥) on EH-EDF𝑥.
We report the results of this simulation study where the
processor load 𝐿

𝑝
is set to 0.3, 0.6, and 0.9, respectively. The

rechargeable power is constant during execution of a task and
varies between a task and another. We took a random func-
tion that randomly gives a number between 10 and 35. The
maximum ambient power is 35. So all tasks are discharging
tasks (𝐿

𝑒
≤ 35). Simulations are performed first with 𝐸max =

100 (Figure 5) and second with 𝐸max = 200 (Figure 6).
When 𝐿

𝑝
is set to 0.3, EH-EDF𝑥 benefits from the high

idle time to recharge the energy storage.Thus, any parameter
𝑥 will be acceptable to recharge the battery without violating
deadlines till 𝑥 = 30. After this value, the percentage of
feasible task sets begins to decrease, and a higher number of
deadlines are missed.

When 𝐿
𝑝
is set to 0.6, the total idle time decreases. We

observe that the performance of EH-EDF𝑥 is roughly con-
stant until 𝑥 reaches 20 where the number of violated dead-
lines begins to increase.

At higher values of processor load, the performance of
EH-EDF𝑥 is approximately constant until 𝑥 reaches a value
of 15 where a higher number of deadlines are violated.

In the second experiment, we double the size of the energy
storage unit (𝐸max = 200)while keeping the other parameters
unchanged.

When 𝐿
𝑝
is set to 0.3, any parameter of 𝑥 will be accept-

able to recharge the energy storage without violating dead-
lines till a high value of 𝑥 = 42 where the percentage of feasi-
ble task sets begins to decrease.The percentage of feasible task
sets is 84% when 𝑥 = 42 which is approximately 58% more
than in the casewhen𝐸max = 100.This is because as the size of
the energy storage increases, EH-EDF𝑥will be able to execute
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Figure 6: Effects of parameter 𝑥 on EH-EDF𝑥 (𝐸max = 200).

more tasks, and consequently the percentage of feasible task
sets will increase. As 𝐿

𝑝
increases, the percentage of feasible

task sets is, respectively, 44% and 50%more for 𝐿
𝑝
= 0.6 and

0.9 than in the case when 𝐸max = 100.
We conclude that the slack time and the energy storage

capacity have a great impact on the system performance. As
we increase the energy storage size, the mean system life time
increases, but without reaching optimality.

7.2. Impact of Parameter 𝐸th on EH-EDF1. In this section, we
experiment on the effect of parameter 𝐸th on EH-EDF1 (Fig-
ures 7 and 8). We report the results of this simulation study
where the processor load 𝐿

𝑝
is set to 0.3, 0.6, and 0.9, respec-

tively. Simulations are performed first for 𝐸max = 100 (case a)
and second for 𝐸max = 200 (case b).

For 𝐸max = 100, we observe that EH-EDF1 gives approxi-
mately an average constant performance until 𝐸th = 0.2𝐸max.
In details, when 𝐿

𝑝
is set to 0.3, the percentage of feasible task

sets for EH-EDF1 is constant until a critical value of 𝐸th (15%
for case (a) and 25% for case (b)). After this critical value, the
performance increases without reaching optimality. When
𝐿
𝑝
= 0.6, the performance of EH-EDF1 is constant until a

critical value of 𝐸th (20% for case (a) and 30% for case (b)).
As 𝐿
𝑝
increases, the percentage of feasible task sets decreases

until it reaches amaximum (76% for case (a) and 89% for case
(b)).

As a conclusion, we demonstrate through the previous
simulations that the slack time and energy storage capacity
have a great effect on the performance of EH-EDF algorithm.
In addition, we note that EH-EDF𝑥 and EH-EDF1 give
approximately the same performance levels in terms of dead-
line missings.
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Figure 7: Effects of parameter 𝐸th on EH-EDF1 (case a).
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Figure 8: Effects of parameter 𝐸th on EH-EDF1 (case b).

7.3. Percentage of Feasible Task Sets. In this section, we exper-
iment on task sets which are feasible. Simulations are per-
formed by varying 𝐸max. Based on the previous simulations,
we choose 𝑥 = 20 for EH-EDF𝑥 and 𝐸th = 25% for EH-EDF1
and EH-EDF3. We report the results of this simulation study
where the processor load (𝐿

𝑝
) is set to 0.3, 0.6, and 0.9,

respectively. EH-EDF2 is eliminated from this section due to
its poor performance. This proves that the maximum upper
bound for the energy storage capacity has a great impact on
the performance.

First, we consider that𝐸max = 100 (Figure 9). Our experi-
ment demonstrates that EH-EDF outperforms the other poli-
cies.This is because EH-EDFwill benefit from the idle time to
recharge the energy storage capacity without violating dead-
lines.
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Figure 9: Percentage of feasible task sets (𝐸max = 100).

In details, when 𝐿
𝑝
is set to 0.3, EH-EDF proves to have

the highest percentage of feasible task sets with 6.9%, 9.5%,
and 27.4% more than EH-EDF1, EH-EDF3, and EH-EDF𝑥,
respectively. As 𝐿

𝑝
increases, EH-EDF outperforms the other

policies but with a performance decrease of 15% from the
first case. This is because as 𝐿

𝑝
increases, the total idle time

decreases and consequently the relative performance of EH-
EDF decreases. At higher values of processor load, the perfor-
mance loss of EH-EDF is about 34%when comparedwith low
processor load.

Secondly, we double the size of the capacity of the energy
storage unit while keeping the other parameters unchanged
(Figure 10). As previously, EH-EDF gives a percentage of
feasible task sets 11%, 18%, and 24%, respectively, higher than
with EH-EDF1, EH-EDF3, andEH-EDF𝑥, respectively.When
the size of the energy storage unit is doubled, the performance
increases of about 21%.

As a summary, this experiment shows that it is highly
probable that no online algorithm can achieve optimality. In
other words, only clairvoyant algorithms that have a complete
knowledge of the task properties and energy production can
achieve a valid schedule whenever one exists.

7.4. Energy Storage Low Level. In this section, wemeasure the
number of times the energy storage unit empties by varying
the processor load. We consider the same values as depicted
in Section 7.3. Simulations are performed for 𝐸max = 100

(case a) and 𝐸max = 200 (case b). When 𝐸max = 100, we
observe from Figure 11 that EH-EDF presents the best behav-
ior relative to the other policies. This is because EH-EDF
will benefit from the idle time to recharge the energy storage
to its maximum value while respecting all deadlines. In
details, the average number of times the energy storage is
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Figure 10: Percentage of feasible task sets (𝐸max = 200).
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Figure 11: Battery low level (𝐸max = 100).

empty under EH-EDF is, respectively, 38% and 49% less than
under EH-EDF𝑥 and EH-EDF1.

Furthermore, we note that EH-EDF3 cannot reach the
empty state 𝐸min since the system is put in the empty state
when the energy capacity reaches 𝐸th min that is greater than
𝐸min (by default equal to zero).

When the energy storage capacity is doubled, EH-EDF
still has the lowest number of energy storage low level
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Figure 12: Battery low level (𝐸max = 200).

(Figure 12). The average number of times the energy storage
empties under EH-EDF is, respectively, 32% and 45% less
than under EH-EDF𝑥 and EH-EDF1. As the energy storage
capacity increases, the number of energy storage low levels
decreases since the energy storage has a higher ability to
execute tasks.

7.5. Average Idle Time. The average idle time has a great
impact when studying the efficiency of EH-EDF especially
in systems that use the Dynamic Power Management mech-
anism (DPM). DPM provides efficiency only if the idle times
are sufficiently long because of inherent time and energy
overhead induced by state switching. Consequently, the
longer is the average idle time, the lower is the impact of the
energy and time overheads incurred by DPM on the overall
performance.

Moreover, the length of the idle time has a great impact
on the life time of the energy storage unit regardless of its
type (battery or supercapacitor). Charging any storage unit is
not linear and consequently the more it is paused, the more
energy it recharges.

In this section, we compute the average idle time by
taking two values for 𝐸max. When 𝐸max = 100 (Figure 13),
we observe that EH-EDF maximizes the average idle time,
respectively, by 70%, 58%, and 45%when comparedwith EH-
EDF𝑥, EH-EDF3, and EH-EDF1. The reason is that, in EH-
EDF, the processor is put into sleep mode as long as the slack
time is positive and the energy level is less than 𝐸max.

When 𝐸max = 200, we observe from Figure 14 that EH-
EDF still maximizes the average idle time, respectively, by
77%, 60%, and 49% when compared with EH-EDF𝑥, EH-
EDF3, and EH-EDF1.
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Figure 13: Average idle time (𝐸max = 100).

8. Conclusions

We studied an energy harvesting sensor node which supports
a set of aperiodic tasks with real-time constraints.The arrival
times, deadlines, and energy demands of the tasks are not
known to the node in advance. We focussed on online sched-
uling with no lookahead including energy production. We
presented and analyzed through an experiment an idling-
EDF-based scheduling algorithm called EH-EDF.

Traditional online algorithms such as EDF behave poorly
because they consume the energy greedily and not adaptively.
We recently proved in [11] that EDF remains the best nonid-
ling scheduler but has a zero competitive factor for the energy
harvesting model. We consequently propose several variants
of EDF to derive more efficient scheduling solutions.

The experiment demonstrates that EH-EDF offers an
acceptable and even good performance in a wide range of sit-
uations.We study the impact of the slack time and the thresh-
old energy level on the performance of EH-EDF in terms
of percentage of feasible task sets. We show that EH-EDF
outperforms EH-EDF1, EH-EDF3, and EH-EDF𝑥 by, respec-
tively, 7%, 10%, and 27%. Furthermore, EH-EDF proves to
be better than EH-EDF𝑥 and EH-EDF1, respectively, by 38%
and 49% in terms of the number of times the energy storage
empties.

Finally, the advantage of the EH-EDF algorithm lies in the
average duration of the processor idle times which is higher
compared with other heuristics. As a result, leakage and over-
head incurred by the implementation ofDPMmechanism are
avoided under EH-EDF.

Thenext step of our workwill be to extend EH-EDF to the
DynamicVoltage and Frequency Scaling (DVFS) technology.
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Figure 14: Average idle time (𝐸max = 200).
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