
Computers and Electrical Engineering 37 (2011) 498–510
Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier .com/ locate /compeleceng
A real-time scheduling framework for embedded systems
with environmental energy harvesting q

Hussein EL Ghor a, Maryline Chetto a,⇑, Rafic Hage Chehade b

a IRCCyN Laboratory, University of Nantes, 1 Rue de la Noe, F-44321 Nantes, France
b Lebanese University, IUT Saida, Lebanon

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 May 2010
Received in revised form 2 May 2011
Accepted 2 May 2011
Available online 31 May 2011
0045-7906/$ - see front matter � 2011 Elsevier Ltd
doi:10.1016/j.compeleceng.2011.05.003

q Reviews processed and approved for publication
⇑ Corresponding author.

E-mail addresses: elghorh@irccyn.ec-nantes.fr (H
Real-time scheduling refers to the problem in which there is a deadline associated with the
execution of a task. In this paper, we address the scheduling problem for a uniprocessor
platform that is powered by a renewable energy storage unit and uses a recharging system
such as photovoltaic cells. First, we describe our model where two constraints need to be
studied: energy and deadlines. Since executing tasks require a certain amount of energy,
classical task scheduling like earliest deadline is no longer convenient. We present an
on-line scheduling scheme, called earliest deadline with energy guarantee (EDeg), that
jointly accounts for characteristics of the energy source, capacity of the energy storage
as well as energy consumption of the tasks, and time. In order to demonstrate the benefits
of our algorithm, we evaluate it by means of simulation. We show that EDeg outperforms
energy non-clairvoyant algorithms in terms of both deadline miss rate and size of the
energy storage unit.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The power management is becoming the central issue in embedded systems that must carry their own power source and
cannot rely on a power outlet on the wall. Without power, the system is useless. In the consumer space such as mobile com-
munication, the consequence may be minor; however, in the so-called hard real-time embedded systems, energy lack means
a failure that can cost millions and even human lives. Traditionally, many embedded systems have been designed to be low-
power. But there is a fundamental difference between power-aware and low-power technologies. In a power-aware system,
we have to make the best use of the available power and the goal of a scheduler is to assign real-time tasks to time slots such
that all timing and power constraints are satisfied [1].

Nowdays, higher energy-density batteries and supercapacitors are being developed but the amount of energy available
still severely limits the system’s lifespan. On the other hand, in most wireless applications including sensor networks,
recharging or replacing batteries is not practical or permitted and consequently alternative power sources which are present
in the environment should be employed. Environmental energy harvesting is deemed a promising approach because many
sensing environments provide sufficient energy that can be harvested for providing power on an infinite time. Several tech-
nologies to extract energy from the environment have been demonstrated including solar, motion-based, biochemical, and
vibrational energies and many others are being developed. A key consideration that affects power management in an energy
harvesting system is that instead of minimizing the energy consumption and maximizing the lifetime achieved as in classical
energy storage operated devices, the system operates in a so-called energy neutral mode by consuming only as much energy
as harvested [2].
. All rights reserved.

by Editor-in-Chief Dr. Manu Malek.

. EL Ghor), maryline.chetto@univ-nantes.fr (M. Chetto), rafichajj@hotmail.com (R.H. Chehade).

http://dx.doi.org/10.1016/j.compeleceng.2011.05.003
mailto:elghorh@irccyn.ec-nantes.fr
mailto:maryline.chetto@univ-nantes.fr
mailto:rafichajj@hotmail.com
http://dx.doi.org/10.1016/j.compeleceng.2011.05.003
http://www.sciencedirect.com/science/journal/00457906
http://www.elsevier.com/locate/compeleceng

H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510 499
Embedded systems are generally real-time ones which have to compute a timely response to external stimuli. Real-time
systems can be classified in three categories: hard, soft and weakly-hard. In hard real-time systems, all the application pro-
grams called tasks, must be guaranteed to complete within their deadlines. For soft real-time systems, it is acceptable to
miss some of the deadlines occasionally with additional value for the system to finish the task, even if it is late. In
weakly-hard real-time systems, tasks are allowed to miss some of their deadlines, but there is no associated value if they
finish after the deadline. Whatever its category, a real-time embedded system is said to achieve energy neutral operation
if its execution requirements can be supported forever despite energy limitations. This supposes to execute the tasks such
that the energy used by them is always less than the energy harvested. A simple approach would be to build a harvester
whose minimum instantaneous power at any instant is sufficient to supply the maximum power required by any executing
task. Unfortunately, this has disadvantages, such as high costs and large space. Most embedded systems constructed to date
do not extract power efficiently from the source. As a result, they use a much larger harvester (e.g. solar panel) than neces-
sary to yield the same level of power as a more efficient one, or they rely on a larger, more expensive, higher capacity battery
than needed in order to sustain extended operation. In both cases, the low harvesting efficiency limits the achievable per-
formance and will preclude the system from many important applications. This has motivated researchers to design energy
harvesting capabilities specifically dedicated to real-time embedded systems from about four years [3]. The crucial issue
associated to these systems is to find scheduling mechanisms that can adapt their performance to the available energy pro-
file. Up to now, when designing a real-time embedded system, the first concern has been usually time, leaving energy effi-
ciency as a hopeful consequence of empiric decisions. Now, the primary concern is that power from solar panels or other free
sources that cannot be stored (or stored with limited capacity) should be fully consumed greedily, or else this energy will be
wasted.

In this paper, we address the problem of scheduling real-time tasks on one processor to meet deadlines and energy con-
straints. The system we target here consists of a processing unit, an energy harvester and a rechargeable energy storage such
as battery or supercapacitor. So, the problem we deal with can be formulated as follows: How can we schedule the tasks so as
to guarantee their timing constraints perpetually by suitably exploiting both the processor and the available ambient energy?

This work presents experimental results about a scheduling framework called earliest deadline with energy guarantee
(EDeg) resulting from the extension of the earliest deadline as late as possible (EDL) server [4]. We modify earliest deadline
first (EDF) scheduler so as to account for the properties of the energy source, capacity of the energy storage as well as energy
consumption of the tasks. We propose a slack-based method for delaying tasks and making the processor inactive during
recharging phases of the energy storage unit. On-line computing by how long the tasks should be delayed is possible thanks
to EDL properties.

The remainder of the paper is organized in the following manner. In the next section, we summarize related work. Section
3 describes the model and gives necessary terminology. In Section 4, we present background materials that are essential for
the understanding of the paper. Section 5 is the presentation of our scheduling scheme, EDeg, with some indications about
practical issues. Results of a simulation study are presented in Section 6. Section 7 concludes the paper and gives some new
directions of work.
2. Related work

Energy-aware real-time scheduling has been the subject of intensive research. Most of the works focus on either mini-
mizing the energy consumption or maximizing the system performance such as the lifetime achieved under the energy con-
straints [5]. In such works, the rechargeability of the energy storage unit is always disregarded. Little work has explored the
problem of scheduling real-time tasks in a uniprocessor rechargeable system. The question amounts to find a schedule which
is able to execute all the tasks within the deadline and energy storage constraints i.e. without running out of energy. Classical
priority driven scheduling has been extended to variable-voltage processors. The idea is to save power by slowing down the
processor just enough to meet the deadlines [6]. But solely applying these techniques has limitations in energy harvesting
systems because they minimize CPU power, rather than they dynamically manage power according to the profiles of both
available energy and processor workload. In what follows, we review the main studies for scheduling tasks in real-time en-
ergy harvesting systems.
2.1. Scheduling frame based systems

In [7], Allavena et al. address the problem of finding the scheduling of frame-based embedded systems which is able to
execute all the tasks within the deadlines, starting with an energy storage fully charged, ending at the same energy level as
when started. In this model, all task periods are identical and all task deadlines are equal to the common period. Conse-
quently, the order of task execution within a frame is not crucial for whether the task set is schedulable or not. Moreover,
the power scavenged by the energy source is assumed to be constant and all tasks consume energy at a constant rate. A solu-
tion is presented that schedules tasks in such a way that the wasted recharging energy is minimized and the energy storage
level is at all times within two limits. The idea behind this algorithm is to insert as little idle time as necessary for recharging
the energy storage and minimizing the length of the schedule. This work is certainly the first one to concentrate on a
rechargeable system with hard real-time constraints. However, the solution only deals with frame based systems under

500 H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510
the restrictive hypothesis that each task is characterized by an instantaneous consumption power which is constant along
time.
2.2. Scheduling with task rewards

Weakly-hard real-time systems can be designed so as providing services with adjustable quality evaluated in terms of
rewards. Reward-based scheduling was explored in the context of imprecise computation where real-time tasks consist
of mandatory and optional parts and a reward function is associated with the length of the optional part [8]. Multiple ver-
sions allow quality of service tradeoffs by providing different levels of accuracy with different execution times and energy
consumptions. When the harvested energy is temporarily low, the service must be lowered or suspended. The main issues
are to maximize the overall reward and to determine the minimum battery capacity necessary to optimally exploit a given
power source. The research presented in [9] propose off-line solutions in a single speed processor system while a solution
with dynamic voltage scaling (DVS) has been proposed recently in [10].
2.3. Scheduling with solar energy harvesting

The first work that really makes adaptive power management for energy harvesting systems has been published in [11].
Their model captures the behaviour of an actual solar energy source through tracing its power profile. In that paper, the
authors propose algorithms for tuning system duty cycle based on the parameters of the solar energy source. The system
switches between active mode and sleep mode depending on harvesting energy and consequently may operate perpetually.
Here, the problem is formulated as a linear program. This linear program has to be solved periodically. Within each period,
adaptations of the duty cycle become necessary if the observed energy values differ from the predicted ones. The main draw-
back of the proposed algorithms is that they do not target at tasks in a real-time pattern. Dealing with real-time tasks under
the strong variation of energy source with respect to time remains a central issue up to day [12].
2.4. Scheduling tasks with constant power consumption

Later in [3], Moser et al. focus on scheduling tasks with deadlines, periodic or not, that run on a uniprocessor system that
is powered by a rechargeable storage unit. The source power is assumed to be predictable but time-varying. They propose
lazy scheduling algorithm (LSA) and prove it to be optimal in terms of deadline miss ratio. LSA is a variation of the famous
earliest deadline first scheduler [13]: the system starts executing a task only if the task is ready and has the earliest deadline
among all ready tasks and the system is able to keep on running at the maximum power until the deadline of the task. In that
work, the consumption power of the computing system is characterized by some maximum value which implies that for
every task, its total energy consumption is directly connected to its execution time through the constant power of the pro-
cessing device. The main disadvantage of this work is that the LSA algorithm executes tasks at full power and therefore, fu-
ture tasks will violate deadlines because of limited energy. Moreover, in practice, the total energy which can be consumed by
a task is not necessarily proportional to its execution time.
2.5. Scheduling with DVFS technology

In [7], Allavena et al. describe an off-line scheduler that uses voltage and frequency selection (DVFS) for a frame based
system. While they permit to reduce power consumption by slowing down task execution under deadline constraints, their
approach relies on the unrealistic assumption that both the instantaneous consumption power and production power are
constant. In 2008, Liu et al. propose an energy aware dynamic voltage and frequency selection algorithm, called EA-DVFS,
for periodic tasks [14]. The purpose of EA-DVFS is to efficiently use the task slack and further reduce the deadline miss rate.
In this algorithm, whether or not the system slows down the task execution for energy saving depends on the available en-
ergy. If the system has sufficient energy, the task is executed at its full speed; otherwise, it is stretched and executed at a
lower speed. Unfortunately, this algorithm has limited impact since, in most embedded applications, the energy storage
has a non constant recharging rate and every task is characterized by its own profile of power consumption which can vary
along time.
2.6. Scheduling tasks with variable power consumption

In practice, the total energy which can be consumed by a task has no correlation with the worst case execution time [15].
For every task, the worst case instantaneous consumption power depends on the circuitry as well as the instrumentation
used by the task during and/or after its execution. Let us notice that the biggest energy consumption is not necessarily in
the computer. It may come from actuators receiving output data from the tasks such as motors. Clearly, as an embedded
system uses a unique energy storage considered as the critical resource of the system, a successful power-aware scheme
must consider these non-computation activities and coordinate their power usage as a whole system.

H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510 501
3. Model and terminology

3.1. Task set

A large number of energy-constrained embedded real-time systems operate in a cyclic basis, with a set of tasks that must
execute before deadlines. We consider here an embedded system that is composed of periodic tasks as depicted in Fig. 1. The
arrival times, energy demands and deadlines of the tasks are known in advance. A periodic task set can be denoted as fol-
lows: s ¼ fsi; i ¼ 1; . . . ;ng. A four-tuple ðCi; Ei;Di; TiÞ is associated with each si. In this characterization, task si makes its ini-
tial request at time 0 and its subsequent requests at times kTi; k ¼ 1;2; . . . called release times. The least common multiple of
T1; T2; . . . ; Tn (called the hyperperiod) is denoted by TLCM . Each request of si requires a worst case execution time (WCET) of Ci

time units and has a worst case energy consumption (WCEC) of Ei. We assume that the WCEC of a task has no relation with
its WCET. A deadline for si occurs Di units after each request by which task si must have completed its execution. We assume
that 0 < Ci 6 Di 6 Ti for each 1 6 i 6 n. We define the processor utilization as Up ¼

Pn
i¼1

Ci
Ti

and the energy utilization as
Ue ¼

Pn
i¼1

Ei
Ti

.
Up is the percentage of processing time if tasks of s are solely executed on the device. One can interpret Ue, measured in

joules/s, as the average power consumed by s when executing on the device.
A job is any request that a task makes. A four-tuple ðrj;Cj; Ej; djÞ is associated with a job Jj and gives its release time, WCET,

WCEC and (absolute) deadline, respectively. A job can be preempted and later resumed at any time and there is no time or
energy loss associated with such preemption.
3.2. Energy source

In order to characterize the energy source, we have to concentrate on the harvested energy since it can incorporate all
losses caused by power conversion and charging process. Generally, the harvested power is time-varying including solar en-
ergy which can be assumed constant on average in a long-term perspective. However, on a short-term perspective, the har-
vested power is highly unstable. Here, we assume that the energy source is uncontrolled but predictable: we cannot control
it but its behaviour may be modeled to predict the expected availability at a given time within some error margin. Solar en-
ergy cannot be controlled but models for its dependence on diurnal and seasonal cycles are known and can be used to predict
availability. The prediction error may be improved using commonly available weather forecasts for the place where the
embedded system is deployed. Consequently, we define the worst case charging rate (WCCR), namely PrðtÞ, which is a lower
bound on the harvested source power output. PrðtÞ is then the instantaneous charging rate that incorporates all losses caused
by power conversion and charging process. We assume that energy production times can overlap with the consumption
times. Clearly, we make no assumption about the nature and dynamics of the energy source, making our approach more eas-
ily implemented in real systems where data about the energy source may not be available beforehand. When available, the
average power of the fluctuating energy source will be denoted as Pr .
3.3. Energy storage

Our system uses an ideal energy storage unit (supercapacitor or battery) that has a nominal capacity, namely E, corre-
sponding to a maximum energy (expressed in Joules or Watts-hour). The energy level has to remain between two boundaries
Emin and Emax with E ¼ Emax � Emin. The stored energy may be used at any time later and does not leak any energy over time. If
the storage is fully charged, and we continue to charge it, energy is wasted. In contrast, if the storage is fully discharged, no
task can be executed.
Fig. 1. A typical energy harvesting real-time system.

502 H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510
3.4. Definitions

� A schedule C for s is said to be valid if the deadlines of all tasks of s are met in C, starting with a storage fully charged.
� A task set s is said to be temporally-feasible if there exists a valid schedule for s without considering its energy constraints.
� A task set s is said to be feasible if there exists a valid schedule for s with considering its energy constraints.
� A scheduling algorithm will be called optimal if it finds a valid schedule whenever one exists.

From previous definitions, it clearly appears that every task set s can be feasible only if Up 6 1 and Ue

Pr
6 1.

4. Background material

Real-time task scheduling refers to determine the order in which tasks are to be executed. The problem of scheduling
periodic tasks on one processor with no energy constraint has been an active area of research for more than thirty years [16].

There are two popular approaches: fixed-priority algorithms, including rate monotonic [13] and deadline monotonic [17],
and dynamic-priority algorithms, including the earliest deadline first (EDF) algorithm [18]. EDF schedules at each instant of
time t, the ready task (i.e. the task that may be processed and is not yet completed) whose deadline is closest to t. EDF is an
optimal scheduling algorithm in the sense that if a set of tasks can be scheduled by any algorithm, then it can be scheduled
by EDF. The EDF algorithm is typically preemptive, in the sense that, a newly arrived task may preempt the running task if its
absolute deadline is shorter. This dynamic priority assignment allows EDF to exploit the full processor, reaching up to 100%
of the available processing time. EDF can be used to schedule both periodic and aperiodic tasks, this is because the task order
is based on the absolute deadline. Liu and Layland [13] proved that a periodic task set with deadlines equal to periods is
schedulable by EDF if and only if the total processor utilization Up is less than or equal to one.

4.1. Static EDS

In general, implementation of EDF consists in ordering tasks according to their urgency and executing them as soon as
possible with no inserted idle time. Such implementation is known as earliest deadline as soon as possible (EDS) [4]. For
a given periodic task set, the EDS schedule can be pre-computed and memorized in order to reduce scheduling overheads
at run time.

Consider a periodic task set s that is composed of three tasks, s ¼ fsi; j1 6 i 6 3 and si ¼ ðCi;Di; TiÞg. Let
s1 ¼ ð3;6;9Þ; s2 ¼ ð3;8;12Þ and s3 ¼ ð3;12;18Þ.

The EDS schedule produced on task set s during the first hyperperiod is depicted in Fig. 2:

4.2. Static EDL

We may imagine an implementation of EDF that leads to execute periodic tasks as late as possible without causing their
deadline to be missed. Then, determination of the latest start time for every instance requires preliminary construction of the
schedule produced by the so-called earliest deadline as late as possible (EDL) algorithm [4].

The main idea of EDL is to differ the execution of tasks which results in maximizing the length of idle time periods at the
beginning of the schedule. Determination of the duration and position of these idle times is done by mapping out the EDL
schedule produced from time zero up to the end of the first hyperperiod thanks to recurrent formulae. This is realized by
means of the two following vectors [19]:

� Static deadline vector K: it represents the time instants from 0 to the end of the first hyperperiod, at which idle times occur
and is constructed from the distinct deadlines of tasks. K ¼ fk0; k1; . . . ; ki; kiþ1; . . . ; kqg. We note that q 6 N þ 1 where N
denotes the number of instances within ½0; TLCM�.
Fig. 2. Static EDS schedule.

Fig. 3. Static EDL scheduling.

Fig. 4. Dynamic EDL schedule built at time 6.

H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510 503
� Static idle time vector D: it represents the lengths of the idle times which start at time instants given by K.
D ¼ fD0;D1; . . . ;Di;Diþ1; . . . ;Dqg.

Let us consider the previous task set s. We note that K ¼ ð0;6;8;12;15;20;24;30;32;33Þ and D ¼ ð2;0;1;0;2;1;0;0;0;3Þ
(see Fig. 3).

4.3. Mixed scheduling EDS/EDL

The slack time of a hard deadline task set at current time t is the length of the longest interval starting at t during which
the processor may be idle continuously while still satisfying all the timing constraints. Slack time analysis has been exten-
sively investigated in real-time server systems in which aperiodic (or sporadic) tasks are jointly scheduled with periodic
tasks [19]. In these systems, the purpose of slack time analysis is to improve the response time of aperiodic tasks or to in-
crease their acceptance ratio. Determining slack time at run-time amounts to compute the so-called dynamic EDL schedule
precisely defined by the two following vectors:

� Dynamicdeadline vector K(t): it represents the time instants greater than or equal to t in the current hyperperiod, at which
idle times occur.
� Dynamic idle time vector D(t): it represents the length of the idle times that starts at time instants given by K(t).

Details of computation are given in [19].
Let us assume that the previous periodic task set has been scheduled according to EDS from time zero until time t ¼ 6. To

determine the slack time at time 6, we compute the dynamic EDL schedule for the interval [6,36]. Fig. 4 enables us to verify
that KðtÞ ¼ ð6;8;12;15;20;24;30;32;33Þ, DðtÞ ¼ ð2;1;0;2;1;0;0; 0;3Þ and the slack time equals 2. In what follows, we will
use the idea of slack stealing to postpone task execution whenever the energy level proves to be insufficient. Then recharging
the energy storage unit must be achieved while still guaranteeing all the deadlines constraints.

5. A scheduling algorithm under renewable energy constraints

Under energy constraints, the scheduling algorithm has to make the energy storage level be sufficient to provide energy
for all future occurring tasks, considering their timing and energy requirements and the replenishment rate of the storage

504 H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510
unit. For this reason, scheduling tasks according to EDS or EDL may result in unnecessary deadline violations since they are
not energy-clairvoyant.

5.1. Presentation of the algorithm

The intuition behind the scheduling algorithm is to run tasks according to the earliest deadline first rule. However, before
authorizing a task to execute, we must ensure that the energy storage is sufficient to provide energy for all future occurring
tasks. When this condition is not verified, the processor has to sleep so that the storage unit recharges as much as possible
and as long as all the deadlines can still be met despite execution postponement.

Following the idea described above, we propose the earliest deadline with energy guarantee (EDeg) algorithm. To for-
mally present the algorithm, we need to introduce two concepts:

� The slack energy of job Jj at time t represents the amount of energy surplus in the storage that can be used from t until the
start time of Jj while still guaranteeing its timing and energy requirements. The slack energy of job Jj at time t is given by
EðtÞ þ

R dj
t PrðtÞdt � Aj where Aj is the processor demand within t; dj

� �
required by the periodic instances ready to be pro-

cessed between t and dj.
� The slack energy of the periodic task set at current time t, is the maximum amount of energy that can be consumed from t

continuously while still satisfying all the timing constraints. The slack energy at time t is computed only when there is at
least one job, say Jj which will be released after t and has a deadline dj that is less than or equal to that of the highest
priority job, ready at t. The slack energy of the system is determined by the minimum slack energy of all the jobs.

The three major components of EDeg algorithm are E(t), Slack.energy (t) and it Slack.time(t). In details, t is the current
time, E(t) is the residual capacity of the storage unit at time t i.e. the energy that is currently stored. Slack.energy(t) and Slack.-
time(t) are, respectively the slack energy and the slack time at time t. PENDING is a Boolean which equals true whenever
there is at least one job in the ready list queue. We use the function wait() to put the processor to sleep and function exe-
cute() to put the processor to run the ready job with the earliest deadline.

Characteristics of EDeg scheduling are the following:

� We never run out of storage (that is, we never dispatch tasks when there is no energy); this is obvious from the algorithm
that does not allow tasks to run after Emin.
� We start charging the storage unit when, either it is empty or there is no more sufficient energy to guarantee the feasible

execution of all future occurring tasks i.e. the system has no more slack energy.
� The charging process aims to charge at the maximum level, Emax, provided there is sufficient slack time. Slack time is com-

puted when entering the wait state and subsequently decremented at each time instant.
� We stop repleneshing the storage unit i.e. the processing device enters the active state as soon as there is no more slack

time or the storage unit is fully replenished. Such condition can be easily detected through an interrupt mechanism and
adequate circuitry between energy storage unit and processing device.
� We only waste recharging power when there are no pending tasks and the storage unit is full.

The framework of EDeg scheduling is as follows:

Algorithm 1. Earliest deadline with energy guarantee algorithm (EDeg)

while (1) do
while PENDING=true do

while (EðtÞ > Emin and Slack:energyðtÞ > 0) do
execute()

end while
while (EðtÞ < Emax and Slack:timeðtÞ > 0) do

wait()
end while

end while
while PENDING=false do

wait()
end while

end while
5.2. Efficiency

The computations of Slack.energy(t) and Slack.time(t) are thus the major keys to the operation of the EDeg algorithm. As
shown in [19], the slack time of a periodic task set at a given time instant can be obtained on-line by computing the dynamic

H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510 505
EDL schedule, with complexity OðK:nÞ. n is the number of periodic tasks, and K is equal to R=pb c, where R and p are, respec-
tively the longest deadline and the shortest period of current ready tasks.

The complexity for computing the slack energy is OðK:nÞ too. As EDeg has low and constant space requirements, this
makes it easily implementable on many low-power, unsophisticated hardware platforms including micro-controllers.

A suggestion to improve the efficiency of the scheduler in terms of overhead is to compute statically a lower bound on the
slack time and a lower bound on the slack energy. And we use them at run-time instead of exact values which would require
on-line computations. The effect will be only, first to stop charging earlier and second to stop executing tasks earlier. As a
consequence, decreasing the processor overheads due to computations will cause increasing the number of tasks
preemptions.

5.3. Measurement support

As any power management algorithm, EDeg typically needs information about available energy resources. Many battery
operated devices, ranging from hand-helds to laptops, provide the facility to monitor the residual capacity of the battery. A
second related measurement is the variability in this energy supply. A method to estimate the energy input then is to mea-
sure the current flowing out of the harvesting source and its voltage. This immediately yields the instantaneous power input
at any time point. Data about when and how much environmental energy is available is directly provided by these measure-
ments. Also, these measurements can be tracked at the desired resolution in time to estimate the variability of the energy
source.

5.4. Illustrative example

Let us consider the previous periodic task set where each task is now characterized by its worst case energy consumption.
s ¼ fsij1 6 i 6 3; si ¼ ðCi;Di; Ti; EiÞg. Let s1 ¼ ð3;6;9;8Þ; s2 ¼ ð3;8;12;8Þ and s3 ¼ ð3;12;18;8Þ. We assume that the energy
storage capacity is E ¼ 6. For simplicity, the rechargeable power, Pr , is constant along time and equals 2. We note that
Up ¼ 0:75;Ue ¼ 2 and consequently the necessary feasibility condition related to energy constraints, Ue 6 Pr is satisfied.
When every task executes, it consumes energy with average power given by Ei

Ci
i.e. 8/3, roughly equal to 2.66. Whenever

the processor is active, the storage unit discharges and the decreasing rate is 0.66 in average.
By scheduling the task set s according to EDS within the first hyperperiod i.e. from 0 to 36, disregarding energy limita-

tions, we verify that s is temporally-feasible (see Fig. 2). However, when considering the energy constraints, the task set re-
veals to be not feasible since the storage unit becomes empty at t = 9. As the system immediately stops, we conclude that the
deadline miss ratio during the hyperperiod is about 33% as shown by Fig. 5.

Under static EDL scheduling, the system stops at t = 27 due to energy shortage. The deadline miss ratio is consequently
78% (see Fig. 6). Even if deadline missing occurs later compared with EDS, EDL does not provide acceptable performance.
While energy is wasted in the early part of the schedule, afterwards, it reveals to be insufficient to cope with surplus of en-
ergy demand due to execution postponement.

Applying a classical greedy scheduler such as EDS or EDL reveals impossible because the system fails as soon as energy
shortage occurs. In contrast, singularity of EDeg lies in inserting processor idle times for recharging the storage unit only
whenever necessary. And the recharging time is computed from the current slack time of the task set in order to still guar-
antee all the deadlines while avoiding energy overflow. Then, the processor is let inactive as long as the energy storage has
not filled completely ðE ¼ EmaxÞ and the latest start time of the next periodic task has not been attained. Clearly, this amounts
to make slack stealing controlled by the residual capacity of the energy storage. The EDeg schedule is described in Fig. 7.

Let us explain how EDeg dynamically constructs the schedule. At time 0, the residual capacity i.e. remaining energy is
maximum since the storage is full. s1 is the highest priority task, executes until time 3 and consumes 8 energy units. At time
3, the residual capacity is given by Emax � E2 þ Pr � C2 ¼ 4. s2 has now the highest priority and the slack energy is undefined
Fig. 5. EDS scheduling.

Fig. 6. EDL scheduling.

Fig. 7. EDeg scheduling.

506 H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510
since no future instance has a deadline less than the deadline of s2. s2 executes completely until time 6 and consumes 8 en-
ergy units. The residual capacity then equals 4 energy units. s3 has now the highest priority and completely executes until
time 9 where the residual capacity falls at 0. As the storage is empty, the processor has to remain idle as long as the storage
has not fulfilled (predicted at time 12) and the latest start time has not been attained (at time 12 which is computed using
dynamic EDL). s1 is then the highest priority task, executes till time instant 15 where the residual capacity is 4. s2 is then the
highest priority task, executes till time 18 where the residual capacity equals 4. s1 executes from time 18 until time 21 where
the residual capacity falls to 0. The processor then remains idle as long as the storage has not fulfilled (predicted at time 24)
and the latest start time has not been attained (at time 24 which is computed using dynamic EDL).

At time 24, the highest priority task, say s3 executes and completes exactly at time 27 where the residual capacity equals
4. s2 executes till time 30. s1 then executes until time 33 where the energy storage is empty. The processor is let idle for
recharging until the end of the hyperperiod at t = 36. We note that neutral operation is guaranteed since the storage is fully
charged at the end of the hyperperiod.

In contrast to EDS and EDL, EDeg feasibly schedules the task set, with the same characteristics of the storage unit and the
power source profile.

6. Performance evaluation

6.1. Simulation details

Two main issues need to be discussed in order to evaluate EDeg: energy storage size and operational performance level in
terms of deadline missing. To evaluate the effectiveness of the proposed EDeg algorithm, we develop a discrete-event sim-
ulation in C/C++. In the simulator, we implement EDeg. For sake of comparison, we also implement EDS and EDL and two
heuristics, respectively called EDd 1 and EDd A. EDd A is the EDS scheduler that discards all the ready instances whenever
the storage unit is empty and consequently lets the processor idle until the next release time. EDd 1 is the EDS scheduler
that discards only one instance (the highest priority one) whenever the storage unit is empty and then lets the processor
idle until the next release time.

We report here part of a performance analysis which consists of two simulation experiments. In the first experiment, we
measure the percentage of feasible instances during one hyperperiod. In the second one, we measure the remaining energy
in the storage unit (also called residual capacity) along time up to the first deadline violation or the end of the first
hyperperiod.

H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510 507
Since the performance of the above algorithms is severely affected by the properties of the arriving tasks, we use a sim-
ulator that generates 30 tasks with least common multiple of the periods equal to 3360. The worst-case computation times
are set according to the processor utilization, Up. Deadlines are less than or equal to periods and greater than or equal to the
computation times ðCi 6 Di 6 Ti). The rechargeable power is variable with time. A random number generator enables us to
produce, for every quantum of time, a power energy profile with minimum value 1 and a maximum value, here 9, as an input
of the simulator. The energy consumptions are set according to the energy utilization, Ue, which necessarily verifies Ue 6 Pr .
We assume that the energy storage is fully charged at the beginning of the simulation. After a deadline violation is detected,
the simulation terminates for EDL and EDS. Under EDd 1 and EDd A, the simulation continues until the end of the hyperpe-
riod. The simulation is repeated for 1000 task sets under a given processor utilization. For the fair comparison of EDeg, EDS,
EDL, EDd 1 and EDd A, all simulations are performed under the same condition.

6.2. Experiment 1: size of the energy storage and deadline miss rate

First, we take interest in the average ratio of instances that meet their deadlines with the five scheduling algorithms by
varying the energy storage capacity. This metrics enables us to deduce two measures. The first one gives us an indication
about the ratio of time during which there is no deadline violation. The second one gives, for each scheduler and for a given
processor utilization ratio, the minimum size of the storage that ensures time and energy feasibility. We report here the re-
sults of three simulation studies where the processor utilization Up is set to 0.3, 0.6 and 0.9, respectively. Fig. 8 depicts the
percentage of instances that meet their deadlines over the energy storage capacity E. For each task set, we compute Efeas as
the minimum storage capacity which permits to achieve neutral operation i.e. time validity of the schedule with battery fully
recharged at the end of the hyperperiod. Consequently, we make vary E so as all task sets turn out to be feasible under EDeg.

For Up ¼ 0:3, the percentage of feasible instances with EDeg algorithm is 100% when the energy storage capacity is at
least 1700 energy units. Consequently, Efeas ¼ 1700. Under EDS, maximum idle time is made available at the end of the hyper-
period. As the storage is initially full, the energy which is available will be used to execute task instances. EDS idle times in
the early part of the schedule do not permit the storage to fully recharge because the processor is quasi-continuously busy. In
the EDL schedule, tasks are delayed as much as possible and the storage unit recharges sufficiently during the idle times to
execute task instances in the busy intervals without making the storage empty and the system failed. As a result, EDL will
give better results than EDS in terms of number of feasible instances before first deadline violation.

In summary, both EDS and EDL are greedy schedulers which perform badly in energy constraint environment and do not
permit to build a valid schedule. Consequently, we are interested in examining the performances of two best-effort heuristics
that provide respective solutions in order to cope with energy lack situations and continue to operate despite a deadline vio-
lation. When the energy storage unit is empty, EDd 1 discards the highest priority instance that is ready. Then, we let the
processor idle until the next release time. EDd 1 performs significantly better than EDd A that systematically discards all
ready instances when the energy storage unit is empty. Even if no time is wasted in attempting to execute tasks which will
not meet their deadlines, the total number of discarded instances is higher with EDd A compared with EDd 1. However, when
the size of the energy storage increases, the number of discarded instances will be close to each other and consequently the
difference between EDd 1 and EDd A will not be significant. As observed in Fig. 8a, 100% task instances meet their deadlines
i.e. task sets are feasible when the energy storage capacity is 5800 for EDS, EDd 1 and EDd A. That means that the storage unit
must be more than 3 times bigger with EDS, EDd 1 and EDd A to maintain zero deadline miss, compared with EDeg.

For Up ¼ 0:6 (see Fig. 8b), the percentage of feasible instances under EDeg algorithm is 100% when the energy storage
capacity is at least 2400 energy units. Furthermore, the energy storage capacity that is required for EDS, EDd 1 and EDd A
to ensure 100% feasible instances is 5900. That means that EDeg can provide the same level of performance with a storage
unit which is about 2.5 times less. We observe that the relative performance gain of EDeg in terms of capacity savings is
decreasing when the processor utilization rate is increasing. For higher values of processor utilization, savings are decreas-
ing, yet they are still significant.

For Up ¼ 0:9 (see Fig. 8c), EDeg obtains capacity savings of about 50% compared with EDL, EDS, EDd 1 and EDd A. Let us
notice that all schedulers require exactly the same storage size when Up ¼ 1 since the processor is continuously busy.

In summary, experiment 1 points out that the proposed EDeg scheduler is very effective in reducing deadline miss rate
and storage size for a real-time system with energy harvesting facilities. And lower is the processor utilization rate, higher is
the capacity saving.

6.3. Experiment 2: remaining energy in the storage unit

Finally, we are interested in the remaining energy stored in the system. Fig. 9 aims to illustrate for Up ¼ 0:3, how the en-
ergy level in the storage unit changes along time. We only report this information for the three following schedulers, EDeg,
EDS and EDL. Under EDS, the remaining energy is decreasing until the storage unit is empty or not sufficient to execute the
highest priority instance. On the contrary, EDL will benefit from the idle times which are present in the early part of the
hyperperiod in order to recharge the storage unit. This is why EDL stores significantly more energy than EDS. In our simu-
lation, EDS and EDL, respectively stop at about 10% and 20% of the hyperperiod (Fig. 9). EDeg runs as EDS except that, when-
ever there is no sufficient energy to execute the highest priority task, the processor starts sleeping but does not stop
definitively. Recall that in our model, the instantaneous power that is consumed by a task may be arbitrarily high. Conse-

1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

E / Emin

%
 o

f F
ea

si
bl

e
In

st
an

ce
s

EDS
EDL
EDd_A
EDd_1
EDeg

1 1.5 2 2.5
0

20

40

60

80

100

120

E / Emin

%
 o

f F
ea

si
bl

e
In

st
an

ce
s

EDS
EDL
EDd_A
EDd_1
EDeg

1 1.1 1.2 1.3 1.4 1.5
0

20

40

60

80

100

120

E / Emin

%
 o

f F
ea

si
bl

e
In

st
an

ce
s

EDS
EDL
EDd_A
EDd_1
EDeg

Fig. 8. Percentage of feasible instances. (a) Low processor utilization ðUp ¼ 0:3Þ. (b) Medium processor utilization ðUp ¼ 0:6Þ. (c) High processor utilization
ðUp ¼ 0:9Þ.

508 H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510
quently, whenever a task requires to be run, its energy consumption requirement is compared with the amount of energy
that will be available during the next unit of time. This implies that the energy level will decrease systematically when exe-

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

time (sec.)

%
 o

f R
em

ai
ni

ng
 E

ne
rg

y

EDeg
EDL
EDS

Fig. 9. Variation of the remaining energy level.

H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510 509
cuting a task without necessarily attaining the minimum level i.e. 0. Then, the storage unit will recharge until being fulfilled
and as long as the system will be able to meet all the deadlines. As seen in Fig. 9, the energy level is decreasing until t = 350,
where the remaining energy is not sufficient to execute the next task instance. Therefore the processor idles until t = 420,
where the energy level is around 77% of the total capacity. This phenomena is repeating along the hyperperiod. The storage
unit is fulfilled again at the end of the hyperperiod, which means that the application runs in an energy neutral operation
mode.
7. Conclusion

Energy-aware design becomes a more important issue in embedded systems that require best use of available power
sources and deliver high performance at the same time. The performance of a practical energy harvesting real-time system,
measured by the deadline miss rate, heavily depends upon the stored energy and the energy harvested from the environ-
ment. Unfortunately, the scavenging power is time-varying and thus very unstable. We target a scheduling framework for
embedded systems with variable power constraints which need to operate perennially thanks to the environmental energy.
In this paper, our focus was on scheduling periodic tasks with deadlines on a uniprocessor and fixed-speed system which is
powered by a renewable energy storage with limited capacity such as a battery or a capacitor.

This work presents the following contributions to research: our scheduler is model-free with respect to the energy source.
It can be implemented in any energy harvesting system without the need for a priori information about the source which
may be uncontrollable and time-varying. We propose an efficient way of scheduling tasks, based on the on-line computation
of the slack time and the slack energy which is a new concept dedicated to hard deadline tasks with regenerative energy
constraints.

We started by describing the preemptive scheduling algorithm, namely EDeg, that is a variation of EDF. EDeg has been
designed for any set of time critical tasks, periodic or not, given any energy source profile with a variable power production
and an energy storage unit with limited capacity. The simulation study reports the performance of EDeg, measured by the
deadline miss rate compared with classical EDF. It shows that EDeg outperforms EDS and EDL for all processor utilization
factors. Several interesting issues need further attention. To expand the applicability of our scheduling framework, we would
like first to incorporate additional power management techniques including voltage/frequency scaling and dynamic power
management to support more effective power-aware designs.
References

[1] Schmitz MT, Al-Hashimi BM, Eles P. System-level design techniques for energy-efficient embedded systems. Kluwer Academic Publishers; 2004.
[2] Kansal A, Hsu J, Zahedi S, Srivastava MB. Power management in energy harvesting sensor networks. ACM Trans Embedded Comput Syst 2007;6(4).
[3] Moser C, Brunelli D, Thiele L, Benini L. Real-time scheduling for energy harvesting sensor nodes. Real-Time Syst 2007;37(3):233–60.
[4] Chetto H, Chetto M. Some results of the earliest deadline scheduling algorithm. IEEE Trans Softw Eng 1989;15(10):1261–9.
[5] Sinha A, Chandrasan A. Dynamic power management in wireless sensor networks. IEEE Design Test Comput 2001;18(2):62–74.
[6] Raghunathan V, Kansal A, Hsu Jason, Friedman Jonathan, Srivastava Mani. Design considerations for solar energy harvesting wireless embedded

systems. In: Proceedings of the fourth international symposium on information processing in sensor networks, 2005. p. 457–62.
[7] Allavena A, Mosse D. Scheduling of frame-based embedded systems with rechargeable batteries. Workshop Power Manage Real-time Embedded Syst

2001.
[8] Shih WK, Liu JWS. On-line scheduling of imprecise computations to minimize error. SIAM J Comput 1996;25(5):1105–21.
[9] Rusu C, Melhem RG, Mosse D. Multi-version scheduling in rechargeable energyaware real-time systems. In: Proceedings of 15th Euromicro conference

on real-time systems, 2003. p. 95–104

510 H. EL Ghor et al. / Computers and Electrical Engineering 37 (2011) 498–510
[10] Moser C, Chen J-J, Thiele L. Reward maximization for embedded systems with renewable energies. In: Proceedings of 14th IEEE international
conference on embedded and real-time computing systems and applications, 2008. p. 247–256.

[11] Kansal A, Hsu J. Harvesting aware power management for sensor networks. In: IEEE Proceedings of design automation conference, 2006.
[12] Hsu J, Zahedi S, Kansal A, Srivastava M, Raghunathan V. Adaptive duty cycling for energy harvesting systems. In: Proceedings of the international

symposium on low power electronics and design, 2006. p. 180–5
[13] Liu C-L, Layland J-W. Scheduling algorithms for multiprogramming in a hard real-time environment. J ACM 1973;20(1):46–61.
[14] Liu S, Qiu Q, Wu Q. Energy aware dynamic voltage and frequency selection for real-time systems with energy harvesting. In: Proceedings of the

conference on design, automation and test in Europe, 2008. p. 236–41.
[15] Jayaseelan R, Mitra T, Li X. Estimating the worst-case energy consumption of embedded software. In: Proceedings of 12th IEEE real-time and

embedded technology and applications symposium, 2006. p. 81–90.
[16] Liu J-W-S. Real-time systems. Prentice-Hall; 2000.
[17] Leung J-Y-T, Whitehead J. On the complexity of fixed-priority scheduling of periodic real-time tasks. Perform Evaluat 1982;2(4):237–50.
[18] Dertouzos ML. Control robotics: the procedural control of physical processes. Proc Int Federat Inform Process Cong 1974:807–13.
[19] Silly-Chetto M. The EDL server for scheduling periodic and soft aperiodic tasks with resource constraints. Real-Time Syst 1999;17(1):1–25.

Hussein EL Ghor is currently pursuing the Ph.D. degree at the University of Nantes, France. He has been a member of the Real Time System group at IRCCyN
Laboratory from 2009. He received the engineering degree from the Lebanese University, Lebanon, in 2002. His research interests concern real-time
scheduling and partitioning with particular emphasis on energy harvesting systems.

Maryline Chetto received the degree of Docteur in control engineering and the degree of Habilitée à Diriger des Recherches in Computer Science from the
University of Nantes, France, in 1984 and 1993, respectively. She is currently a full Professor with the Institute of Technology of Nantes and is conducting
her research at IRCCyN Laboratory. Her main research interests are scheduling and power management for real-time systems. She has published more than
70 journal articles and conference papers in the area of real-time systems.

Rafic Hage Chehade received the Ph.D. degree in electrical engineering from the University of Lille 2, France, in 1989. His doctoral thesis was on medical
instrumentation. From 1990 to 1997, he was teaching in the University of Lille 1 and Ecole d’ingenieurs HEI. He joined the Lebanese University in 1997 and
is currently an Associate Professor in the Institute of Technology of Saida. His research interests include digital communication and embedded technology.

	A real-time scheduling framework for embedded systems with environmental energy harvesting
	1 Introduction
	2 Related work
	2.1 Scheduling frame based systems
	2.2 Scheduling with task rewards
	2.3 Scheduling with solar energy harvesting
	2.4 Scheduling tasks with constant power consumption
	2.5 Scheduling with DVFS technology
	2.6 Scheduling tasks with variable power consumption

	3 Model and terminology
	3.1 Task set
	3.2 Energy source
	3.3 Energy storage
	3.4 Definitions

	4 Background material
	4.1 Static EDS
	4.2 Static EDL
	4.3 Mixed scheduling EDS/EDL

	5 A scheduling algorithm under renewable energy constraints
	5.1 Presentation of the algorithm
	5.2 Efficiency
	5.3 Measurement support
	5.4 Illustrative example

	6 Performance evaluation
	6.1 Simulation details
	6.2 Experiment 1: size of the energy storage and deadline miss rate
	6.3 Experiment 2: remaining energy in the storage unit

	7 Conclusion
	References

