
6th International Conference on Internet Technology and Secured Transactions, 11-14 December 2011, Abu Dhabi, United
Arab Emirates

Real-Time Scheduling

for Energy Harvesting Sensors

Maryline Chetto
IRCCyN Lab

University of Nantes

UMR CNRS 6597 IRCCyN

Hussein EL Ghor
IRCCyN Lab

University of Nantes

UMR CNRS 6597 IRCCyN

Rafic Hage Chehade
Lebanese University

Institut Universitaire de Technologie - Saida

E-mail: rafichagechehade@u1.edu.1b

Email: maryline.chetto@univ-nantes.fr Email: elghorh@irccyn.ec-nantes.fr

Abstract- Energy harvesting is the conversion of ambient

energy into electricity to power small devices such as wireless
sensors, making them self-sufficient. The electrical energy used
to power them is variable over time and limited by the capacity
of the energy storage (battery or ultra-capacitor). In general,
these embedded devices have to adhere to real-time constraints
expressed in terms of deadlines. In this paper, we present power
management and scheduling solutions for energy harvesting
systems having real-time constraints such as most of wireless
sensors. We show how to answer questions like the following:
When should the system use energy? When should it be idle and
recharge the energy storage'? We review the main properties of
a scheduler known as Earliest Deadline with Energy Guarantee
(EDeg) and we report results of an experimental study.

I. INTRODUCTION

New powering methods, as an alternative to the current

disposable battery, permit autonomous sensors to scavenge

the energy in the environment. Environmental applications

include forest fire detection, monitoring the level of air pol

lution and health applications like tele-monitoring of human

physiological data. Numerous harvesting modalities have been

demonstrated such as solar, vibrational, motion based, etc. The

energy harvested from the environment can be stored in either

batteries or ultra-capacitors. Batteries have a higher energy

density and lower leakage, while ultra-capacitors have a higher

round trip efficiency and offer higher endurance in terms of

charge-discharge cycles.

Over the last decade, several energy sources have evolved from

human and animal power to fossil fuels, nuclear, hydropower,

wind, and solar energy [6]. Moreover, many alternative sources

of energy are still being researched and tested. Technologies

are continually being developed and enhanced to improve

energy sources. In our work, we focus on the solar energy

since it can be assumed constant on average in a long term

perspective.

In a REH (Real-time Energy Harvesting) system, we have to

make the best use of the available power and the goal of a

scheduler is to assign the tasks (programs) to time slots such

that all timing and power constraints are satisfied every time.

We then say that the system operates in an energy neutral

mode by consuming only as much energy as harvested [4].

In this paper, we will describe how to dynamically man

age power in a single processor REH system where tasks

are scheduled according to the famous preemptive dynamic

priority policy, Earliest Deadline First (ED F).

The intuition behind the proposed scheme is to run tasks as

long as the energy storage is sufficient to provide energy for

all future occurring tasks, considering their timing and energy

requirements and the replenishment rate of the storage unit.

When this condition is not verified, the processor has to be

idle so that the storage unit recharges as much as possible and

as long as the system will be able to meet all the deadlines.

The rest of the paper is organized as follows: We first

present the necessary background and related work in Section

II. We outline the models in Section III and crucial concepts

including the slack energy in Section IV. In Section V,

we present EDeg scheduler. Section VI is concerned with

experimental results. Finally, we conclude the paper in Section

VII.

II. RELATED WORK AND NECESSARY BACKGROUND

Researchers started to address power and scheduling issues

in the last decade but most of them do not consider both

recharge ability of the batteries and real-time constraints. In

the work by Allavena et al. in [1], power scavenged by the

energy source is constant and all tasks consume energy at a

constant rate. Later in [5], Moser et al. propose LSA (Lazy

scheduling Scheduling Algorithm) to optimally schedule tasks

with deadlines, periodic or not. In that work, the total energy

consumption of every task is directly connected to its execu

tion time through the constant power of the processing device.

But in a real application, instantaneous power consumed by

tasks may vary along time depending on circuitry and devices

required by the tasks. Very recently, in [3], we relaxed the

restrictive hypothesis that links together energy requirement

and execution time of tasks. We presented an on-line schedul

ing scheme called EDeg. Under energy constraints, simply

executing tasks according to the EDF rule, either as soon as

possible (EDS) or as late as possible (EDL) may lead to violate

some deadlines. E Deg is a variation of ED F that relies on

two fundamental concepts, namely slack time and slack energy.

978-1-908320-00-1/11/$26.00 ©2011 IEEE 396

III. MODELS AND ASSUMPTIONS

A. Application model

We consider here a set of independent periodic tasks that

can be denoted as follows: T = {Ti, i = 1, . . . , n}. A

four-tuple (Gi, Ei, Di, Ti) is associated with each Ti. In this

characterization, task Ti makes its initial request at time °
and its subsequent requests at times kTi, k = 1, 2, ... called

release times. The least common multiple of T1 , T2 , . . . , Tn
(called the hyperperiod) is denoted by TLClvI. Each request of

Ti requires a Worst Case Execution Time (WCET) of Gi time

units and has a Worst Case Energy Consumption (WCEC) of

Ei. We assume that the WCEC of a task has no relation with

its WCET.

A deadline for Ti occurs Di units after each request by which

task Ti must have completed its execution. We assume that

° < Gi :s; Di :s; Ti for each 1 :s; i :s; n.
Tasks are scheduled on a single processor system. Task set

T is said to be feasible if all tasks meet the deadlines.

B. Energy model

We assume that ambient energy is harvested and converted

into electrical power. We cannot control the energy source but

we can predict the expected availability with a lower bound on

the harvested source power output, namely Ps (t) . This power

is then the instantaneous charging rate that incorporates all

losses caused by power conversion and charging process. It is

stored in a device with capacity G.
The stored energy at current time t is denoted as E (t) . It

can be measured with reasonable accuracy, used at any time

later with no leak over time. We assume that energy production

times can overlap with the consumption times.

IV. FUNDAMENTAL CONCEPTS

A. Slack time

The slack time of a hard deadline task set at current time

t is the length of the longest interval starting at t during

which the processor may be idle continuously while still

satisfying all the timing constraints. Slack time analysis has

been extensively investigated in real-time server systems in

which aperiodic (or sporadic) tasks are jointly scheduled with

periodic tasks [2]. In these systems, the purpose of slack time

analysis is to improve the response time of aperiodic tasks

or to increase their acceptance ratio. A means of determining

the maximum amount of slack which may be stolen, without

jeopardizing the hard timing constraints, is thus a key to

the operation of the so-called slack-stealing algorithms.

Determining slack time is realized at run-time by computing

the so-called dynamic EDL(Earliest Deadline as Late as

possible) schedule [2].

Illustrative Example:

Consider a periodic task set r that is composed of three tasks,

r = {Ti 11:S; i:S; 3} andTi = (Gi, Di, Ti) . LetTl = (1, 5, 6),
T2 = (2, 8, 10) and T3 = (4, 11, 15). Before beginning to

schedule the task set r, we must verify the timing feasibility

o Execution of tasks under EDF

t Release Time t Deadline

Fig. 1. Computing Slack Time

condition. The processor utilization Up = 2:�=o g; = �6 :s; 1,
consequently the necessary feasibility condition related to

timing constraints, Up :s; 1 is satisfied. Hence the total slack

time that can be used is equal to 11. We begin scheduling the

task set r according to EDS until t = 8 where we have to

insert a slack time.

To determine the slack time at time t = 18, we first

compute the static EDL schedule for the interval [0, 30].
That means we have to compute the static deadline

vector lC and the static idle time vector V [2]. We

note that lC (0, 5, 8, 11, 17, 18, 23, 26, 28, 29) and

V = (3, 0, 0, 4, 0, 3, 0, 0, 0, 1).
Determining the slack time at time t = 18 is realized at

run-time by computing the so-called dynamic EDL schedule

precisely defined by the dynamic deadline vector lC (t) and

the dynamic idle time vector V (t) [2]. Figure 1 enables

us to verify that lC (t) = (18, 23, 26, 28, 29) and V (t)
(4, 2, 0, 0, 0, 1) and consequently the slack time is equal to

4. In what follows, we will use the idea of slack time to

recharge the energy storage capacity whenever it is insufficient

to execute more tasks.

B. Slack energy

On the other hand, slack energy is the maximum amount

of energy that can be consumed from a given time t while

still satisfying the timing and energy requirements of all

the future occurring tasks. Slack energy must be computed

by taking into account all periodic instances which have a

deadline less than or equal to d, the deadline of the highest

priority instance ready at current time t.
As total energy produced by the source within [t, d] is

ltd Ps (t)dt, Slack_energy (t) = E (t) + ltd Ps (t)dt - A
where A is the energy demand required by the periodic task

instances ready to be executed within the interval [t, d) .

Illustrative Example:

Consider the above example. Now, we introduce the

energy consumption of tasks. r = {Ti I 1 :s; i :s; 3} and

Ti = (Gi, Di, Ti, Ei). Let T l = (1, 5, 6, 12), T2 = (2, 8, 10, 15)
and T3 = (4, 11, 15, 22) (figure 2). We assume that the energy

storage capacity is G = 25 energy units at t = 0. For

simplicity, we assume that the rechargeable power is constant

397

along time with (Fs = 5). Before beginning to schedule the Algorithm 1 Earliest Deadline with energy guarantee algo

rithm (EDeg)

o Execution of tasks under EDF

t Release Time + Deadline

T1 is released after t=10
and has deadline <18

Fig. 2. Computing Slack Energy

task set r, we must verify the energy feasibility condition.

Ue = 2:�=0 g; =

1
3� <::: 5. Consequently, Ue <::: Fs .

Under EDeg, slack energy is computed whenever the

highest priority task ready to be executed can be preempted

by a task requiring energy. From time 0 until t = 10, tasks

are executed according to EDS and the energy level is given

by E(10) = 14 energy units. At t = 10 (figure 2), T2 is the

highest priority task. Slack energy is then computed from all

task instances released after t = 10 with deadline less than or

equal to deadline of T2 equal to 18.

SlacLenergy(lO) = E(10)+j
18

Fsdt-E1 -E2 = 22 (1)
10

Since slack energy is positive, T2 can start execution while

still guaranteeing sufficient energy for all future occuring task

instances.

V. THE EDeg ALGORITHM

We present hereafter a new scheduler based on the two

previous concepts in order to enhance performance of classical

EDF.

A. Presentation of the Algorithm

EDeg (Earliest Deadline with energy guarantee) runs tasks

according to the earliest deadline first (ED F). We consider

that a task can consume energy with any power. This means

that before executing a task, we must ensure that the energy

storage is sufficient to execute this task during at least one

time unit. When there is no sufficient energy in the storage

unit, the processor has to remain idle so that the storage unit

recharges entirely (E(t) = Emax) but making sure that there

is sufficient slack time.

Thus, the three major components of EDeg algorithm are

E(t), Slack_energy(t) and Slack_time(t) where E(t) is

the amount of energy that is currently stored at time t.
FEN DING is a boolean which equals true whenever there is

at least one task instance ready to be executed. Also, we define

the function waitO to put the processor in the idle state and

the function executeO to put the processor to run the ready

job with the earliest deadline. The framework of the EDeg
scheduling algorithm is as follows:

Input: A Set of Periodic Tasks T { Ti I Ti
(Ci, Di, Ti, Ei) i 1, . . ·, n} According to EDF,

current time t, battery with capacity ranging from Emax
to Emin, energy level of the battery E(t), source power Fs (t).

Output: EDeg Schedule.

1: while (1) do

2: while PENDING=true do

3: while (E(t) > Emin and Slack_energy(t) > 0) do

4: executeO

5: end while

6: while (E(t) < Emax and Slack_time(t) > 0) do

7: waitO

8: end while

9: end while

10: while PENDING=false do

II: waitO

12: end while

13: end while

From the EDeg algorithm, we notice the following: First,

we never run out of storage, that means we always check

for sufficient energy in the battery before executing any task

instance. Second, the processor is only entered in the idle

state when either the battery is empty or there is no more

sufficient energy to guarantee the feasible execution of all

future occurring tasks. Third, we recharge the battery to the

maximum level when there is sufficient slack time. We only

stop recharging when there is no more slack time or the battery

is fully replenished. We can easily detect this condition by

using an interrupt mechanism and adequate circuitry between

storage unit and processing device. Finally, we only lose

recharging power when there are no pending instances and

the battery is fully recharged.

B. Efficiency

Complexity of an on-line algorithm is an evaluation of

overheads that are produced when this algorithm actually

runs. So, in a hard real-time context where all the tasks must

imperatively meet their timing requirements, it is of more

practical interest to make use of an algorithm which is both

optimal in terms of scheduling performance and efficient in

terms of computational complexity.

Under EDeg scheduling, overheads are mainly induced by

computating the slack time and the slack energy. Slack time

is computed solely when recharging the battery. Computing

slack energy is realized when executing a periodic instance

while other ones with earliest deadline will occur in the fu

ture. Consequently, complexity of computing the slack energy

directly depends on the number of preemptions. Higher the

number of preemptions, higher the overhead induced by the

scheduler.

398

As shown in [2], the slack time of a periodic task set at a

given time instant can be obtained on-line by computing the

dynamic EDL schedule, with complexity O(K.n). n is the

number of periodic tasks, and K is equal to I �l, where R
and p are respectively the longest deadline and the shortest

period of current ready tasks.

Moreover, the complexity for computing the slack energy is

O(K.n). As EDeg has low and constant space requirements,

this makes it easily implementable on many low-power, unso

phisticated hardware platforms including micro-controllers.

A suggestion to improve the efficiency of the scheduler in

terms of overhead is to make some computations off-line. We

can compute statically a lower bound on the slack time and a

lower bound on the slack energy and use these approximation

values at run time. The consequences will be only to stop

charging earlier and to stop executing tasks earlier. And the

number of tasks preemptions will increase while the processor

overheads will decrease.

C. Illustrative Example

We consider the previous example. We note that r is not

feasible if tasks are executed as soon as possible according

to Earliest Deadline since the energy storage becomes empty

at t = 18 (figure 3) where the system stops immediately. In

o Execution of tasks under EDF. Processor Idle time under EDeg

t Release Time t Deadline

1

e

Fig. 3. Task scheduling according to E Deg

details:

• According to EDeg, tasks of r are executed as soon as

possible according to EDF until t = 15 where E(t) =

12 energy units.

• At t = 15, slack energy needs to be computed since

73 is the highest priority task ready to be executed with

future preemptions. As the slack energy is positive, 73 is

executed until t = 18 where there is no sufficient energy

in the battery for execution. The processor is let inactive

as long as the energy storage has not filled completely

and the slack time is still positive.

• At t = 22, the battery is fully replenished (E(22) = 25)
energy units, 71 is executed till t = 23, where E(t) = 18
energy units.

• At t = 23, 73 completes its execution till t = 24 where

E(t) = 8 energy units.

• At t = 24, 72 has the highest priority and is executed till

t = 26, where E(t) = 3 energy units.

• Now, 71 is ready and has the highest priority. As there

is no sufficient energy in the battery for execution, the

processor is let idle for recharging till t = 28 where

E(t) = 13 energy units.

• At time t = 28,71 is executed till t = 29, where E(t) = 6
energy units.

• Finally, the processor is idle from t = 29 to t = 30 where

E(t) = 11 energy units.

VI. EXPERIMENTAL RESULTS

A. Setup

We have implemented EDeg in a discrete event simulator

in C/C++. To evaluate its etlectiveness, we consider several

task sets, each containing up to 30 randomly generated tasks.

In this simulator, we implement EDeg with respect to EDS
and two heuristics EDd_l and EDd_A. Where, EDd_A is the

Earliest Deadline as Soon as possible scheduler that discards

ALL the ready instances whenever the storage unit is empty

and consequently let the processor idle until the next release

time and EDd_l is the Earliest Deadline as Soon as possible

scheduler that discards only one instance (the highest priority

one) whenever the storage unit is empty and then let the

processor idle until the next release time.

The rechargeable power Ps is constant and we consider two

cases: low and high energy utilization. We assume that the

energy storage is fully charged at the beginning of the sim

ulation. After a deadline violation is detected, the simulation

terminates for EDL and EDS. Under EDd_l and EDd_A
the simulation continues until the end of the hyperperiod.

We compare the performance of the following techniques:

(i) percentage of feasible task sets, (ii) average idle time and

(iii) time overhead.

B. Low Energy Utilization

We first consider a system that consumes little energy

relative to energy produced by the environment i.e. Uel Ps =

0.3 where Ue = ��=1 !f:.
1) Percentage of Feasible Task Set: We experiment the

percentage of feasible task sets which are feasible with EDeg
and not feasible with a greedy algorithm (EDS). We report the

results of this simulation study where the processor utilization

Up = {0.3, 0.6, 0.9}. Our simulation depicts the percentage

of feasible task sets over the energy storage E (t). For each

task set, we compute Efeas as the minimum storage capacity

which permits to achieve neutral operation i.e. all tasks are

executed without violating deadlines and the battery is fully

recharged at the end of the hyperperiod. When Up = 0.3
(figure 4), all task sets are feasible under EDeg when the

feasible energy Efeas = 7100 energy units since EDeg will

benefit from the idle time to recharge the battery whenever

the energy storage is insufficient to execute more tasks. On

the other hand, EDS will need more energy storage than

399

10

80

60 .� W LL 40 '5
'"

10
a;
(/J
�

�
e-
w
:0 .� w LL
'5
'"

1.2 1.4

E I Efeas

10
a;
(/J
�

�
e-
w
:0 .� W LL
'5
'"

1.5 2 1.2 1.4 1.6

E / �e" E / �e"

Fig. 4. % of Feasible Task Sets for low energy utilization

EDeg to guarantee feasibility. In this case, all task sets are

feasible under EDS when the energy storage is 21300 energy

units. This means that EDeg can provide the same level of

performance with a storage unit which is four times less.

When Up = 0.6 (figure 4), all task sets are feasible under

EDeg when the feasible energy Ejeas = 10800 energy

units. Under EDS, all task sets are feasible when the storage

energy is about 28620 energy units,this means that the storage

unit must be about 2.65 times bigger with EDS to maintain

100% feasible task sets compared to EDeg. We observe that,

the relative performance gain of EDeg in terms of capacity

savings is decreasing when the processor utilization rate is

increasing.

For high processor utilization, the performance gain in ca

pacity savings decreases. This can be proved by our simulation

since when Up = 0.9, EDeg obtains capacity savings of about

59% compared to EDS.
2) Average Idle Time: The schedule produced by any

scheduling algorithm can be characterized by the average

duration of idle time intervals or the average number of idle

time intervals in a given time window such as the hyperperiod

of the schedule. Lower is the number of idle time intervals,

lower will be the energy spent in transferring the processor

from the inactive state to the active state. Let us note that new

generation processors use dynamic power management (DPM)

mechanisms. Using such mechanism can greatly enhance the

performance of the system since it consists in putting off the

processor whenever the processor has no task to execute. How

ever, this mechanism consumes energy and will be efficient as

long as the processor remains inactive during a sufficiently

long period.

In this section, we compute the total number of idle time

intervals for EDeg, EDd_A and EDd_l by varying the

processor utilization Up. In order to get an objective measure

ment we take into account the percentage of deadlines being

satisfied. Figure 5 gives a measurement of the total number

of idle time intervals weighted by the percentage of deadlines

being satisfied.

O.35��-�-�-�-�-�-��==;-

:g 0.2
'0
1:
� 0.15

�
I

0.1
•

� 0.05

Fig. 5. Idle time intervals for Low Energy Utilization

The total number of idle times in EDeg is lower than that

of EDd_A and EDd_l since EDeg will benefit from the

maximum time used to recharge the battery at the maximum

level. As a result, the average idle time in EDeg will be greater

than that of EDd_A and EDd_l and consequently the total

number of idle times is smaller.

Consequently, short idle intervals that result in leakage

are avoided with EDeg. And EDeg will have low energy

overhead coming from transferring the processor from the

inactive state to the active state.

3) Time Overhead: This experiment explores the time

overhead of EDeg i.e time spent to compute both slack

energy and slack time. The objective is to prove that the gain

in performance (from the above sections) is higher than the

cost incurred by its implementation. Let us recall that EDF

has no overhead (except due to preemptions and context

switches) since no on-line computations are required.

In the following, we measure the time overhead as the number

of slack time and slack energy computations divided by the

number of task instances. Under EDeg, for low values of

Up, the time overhead is low (figure 6). As Up increases,

the time overhead increases. Nevertheless, it remains low

even for Up = 0.9. Slack time computations are performed

whenever the processor needs to be idle because of no

more energy. For low energy utilization, overhead to due

slack time computations is consequently low. Slack energy

computations are performed whenever a task is preempted by

at least one higher priority task. Higher is Up, higher is the

number of task instances and so the number of preemptions

and consequently higher is the overhead due to slack energy

computations.

C. High Energy Utilization

Let us consider a system with high energy utilization i.e.

Ue/ Ps = 0.9. That means that the periodic task set consumes

90% of the energy produced by the environment.

400

0.06�-�-�-�-�-�-�-�-�

0.05

0.04

0.03

0.D2

0.01

0.1 0.4 0.'
Up

0.6 0.7

Fig. 6. Time Overhead for Low Energy Utilization

1) Percentage of Feasible Task Sets: As previously, for each

task set, we compute Ejeas as the minimum storage capacity

which permits to achieve neutral operation. Then we begin to

increase Ejeas until we reach 100% of feasible task sets with

EDS. When Up = 0.3 (figure 7), all task sets are feasible

10

* 80 (J) "
w
rn

60 e-
w
:c
·w 40 � LL
'0 20
�

0
1

10

* 80 (J) "
w
rn

60 e-
w
:c .� w LL
'0 2
�

0
1

E / Efeas
U =0.6 p

10

*
(J) "
w
rn
e-
w
:c
·w
� LL
'0
�

20
1

E / �e" E / �e"

Fig. 7. % of Feasible Task Sets for high energy utilization

under EDeg when the feasible energy Ejeas = 10000 energy

units. This means that the feasible energy is increased by

29% relative to low energy utilization. This is because as the

energy utilization increases, the consumed energy increases

and consequently the minimum storage capacity which permits

to achieve neutral operation Ejeas increases. On the other side,

all task sets are feasible under EDS when the energy storage

is 44000 energy units. This means that EDeg can provide the

same level of performance with a storage unit which is about

4.4 times less.

If we increase Up to 0.6 (figure 7), and run the simulation

again, we find that all task sets are feasible under EDeg when

the feasible energy Ejeas = 15200 energy units. Under EDS,
all task sets are feasible when the storage energy is about

58000 energy units; that means that the storage unit must be

about 3.8 times bigger with EDS to maintain 100% feasible

task sets compared to EDeg. We observe that, the relative

performance gain of EDeg in terms of capacity savings is

decreasing when the processor utilization rate is increasing.

For high processor utilization, the performance gain in ca

pacity savings decreases. This can be proved by our simulation

since when Up = 0.9, EDeg obtains capacity savings of

about 45% compared to EDS. That is because when the

processor utilization is high, the processor rarely has chance

to be idle to recharge the battery. This results in the decrease

of performance gain of EDeg in terms of capacity savings.

When Up = 1, EDeg and EDS are the same since there is

no chance for E Deg to be idle to save energy.

As a conclusion, as the energy utilization increases, the

consumed energy increases and as a result, the energy storage

needed to achieve feasibility for EDeg increases. This is

clearly shown in the simulation results since the feasible

energy in high energy utilization is increased respectively by

29%, 28% and 25% for Up = 0.3, 0.6 and 0.9 when compared

to low energy utilization.

2) Average Idle Time: In this section, we present results of

simulations performed to compute the weighted total number

of idle time intervals for EDeg, EDd_A and EDd_1 by

varying the processor utilization Up from 0.1 to 1.

O.';�-��-�-�-�-�-�====il ---6-EDeg
0.45

"' j 0.4
E 0.35
i=
� 0.3
b
� 0.25
E
Z 0.2
1l � 0.1 5
.i" � 0.1
"

0.05

---B-EDd A
----4---EDd=1

Fig. 8. Idle time intervals for High Energy Utilization

From figure 8, we can rapidly conclude that the total number

of idle times in E Dd_1 is greater than E Dd_A.
Depending on the concept of EDeg, when the energy

storage is empty, the processor has to be idle so that the storage

unit recharges to its maximum capacity or as much as possible

and as long as the system will be able to meet all the deadlines.

For this reason, the total number of idle time intervals must

be smaller in EDeg than EDd_A and EDd_1. Also, task

instances are 100% feasible in EDeg and not in EDd_A and

E Dd_1. Then, by dividing the total number of idle times over

the percentage of feasible task instances, we will conclude that

the weighted total number of idle time intervals in EDeg is

lower than EDd_A and EDd_1 by respectively 71 % and 68%.

Moreover, for high energy utilization, the consuming energy

increases and the number of low battery level also increases.

Thus, the number of idle times increases and consequently

the average idle time decreases. This is proved by simulations

401

since the average idle time decreases by 45% from low to high

energy utilization.

3) Time Overhead: For a realistic scenario, we must

take the time overhead into consideration. As stated above,

there is no overhead under ED scheduling. In this ex

periment, we explore the time overhead by varying the

processor utilization (Up). The chosen values for Up are

{O.l, 0.2, 0.4, 0.6, 0.8, 0.9}.

O.09,----�-�-�-�--�-�-�-__,

0.08

0.07

0.06
"
� 0.05
�
� 0.04
>=

0.03

0.D2

0.01

0.1 0.2 0.3 0.4 0.5
",

0.6 0.7 0.8

Fig. 9. Time Overhead for High Energy Utilization

0.9

As shown in figure 9, when processor utilization Up in

creases the time overhead increases till it reaches maximum

value when Up = 0.9. It is important here to note that time

overhead at Up = 0.9 relative to the total number of feasible

instances is very low. This means that the gain in performance

for EDeg is higher than the time overhead.

Moreover, under high energy utilization, the time overhead

increases. This is because as energy utilization increases, the

consumed energy increases and as a result the need to compute

the slack time increases. Consequently, the time overhead

increases. This is proved by simulations since the average

time overhead in high energy utilization increases by about

47% relative to low energy utilization.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a scheduler dedicated to embed

ded systems such as wireless sensors which harvest energy

from the environment. We considered a uniprocessor system

that execute periodic tasks that consume energy during their

execution with possibly different instantaneous consumption

powers. The crucial part of the so-called EDeg scheduling

algorithm lies on two on-line functions called slack time and

slack energy.

The simulation study reports the performance of EDeg,
primarily measured by the percentage of feasible task instances

i.e. percentage of task that meet their timing requirements

expressed in terms of deadlines. The study shows that EDeg
outperforms the classical and well known Earliest Deadline

First scheduler. Moreover, we demonstrated that the overhead

of EDeg remains acceptable which makes it a practicable

scheduler.

REFERENCES

[I] A. Allavena and D. Mosse, Scheduling of frame-based embedded systems
with rechargeable batteries, In Workshop on Power Management/i)r Real

time and Embedded systems (in conjunction with RTAS 2001), 200l.

[2] M. Silly-Chetto. The EDL Server for scheduling periodic and soft aperi
odic tasks with resource constraints. The Journal of Real-Time Systems,

17: 1-25, 1999.

[3] M. Chetto and H.EI Ghor. Real-time Scheduling of periodic tasks in
a monoprocessor system with rechargeable energy storage. In WIP

Proceedings of the 30th IEEE Real-Time Systems Symposium December
2009.

[4] A. Kansal, I. Hsu. Harvesting aware power management for sensor
networks, In IEEE Proceedings of Design Automation Conference, 2006.

[5] C. Moser, D. Brunelli, L. Thiele, L. Benini. Real-time scheduling for
energy harvesting sensor nodes, Real-Time Systems, Volume 37, Issue 3,

Pages: 233 - 260, December 2007.

[6] S. Priya and D.-I. Inman. Energy Harvesting Technologies. Springer, New
York (USA), 2009.

402

