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Abstract- Energy harvesting is the conversion of ambient 

energy into electricity to power small devices such as wireless 
sensors, making them self-sufficient. The electrical energy used 
to power them is variable over time and limited by the capacity 
of the energy storage (battery or ultra-capacitor). In general, 
these embedded devices have to adhere to real-time constraints 
expressed in terms of deadlines. In this paper, we present power 
management and scheduling solutions for energy harvesting 
systems having real-time constraints such as most of wireless 
sensors. We show how to answer questions like the following: 
When should the system use energy? When should it be idle and 
recharge the energy storage'? We review the main properties of 
a scheduler known as Earliest Deadline with Energy Guarantee 
(EDeg) and we report results of an experimental study. 

I. INTRODUCTION 

New powering methods, as an alternative to the current 

disposable battery, permit autonomous sensors to scavenge 

the energy in the environment. Environmental applications 

include forest fire detection, monitoring the level of air pol

lution and health applications like tele-monitoring of human 

physiological data. Numerous harvesting modalities have been 

demonstrated such as solar, vibrational, motion based, etc. The 

energy harvested from the environment can be stored in either 

batteries or ultra-capacitors. Batteries have a higher energy 

density and lower leakage, while ultra-capacitors have a higher 

round trip efficiency and offer higher endurance in terms of 

charge-discharge cycles. 

Over the last decade, several energy sources have evolved from 

human and animal power to fossil fuels, nuclear, hydropower, 

wind, and solar energy [6]. Moreover, many alternative sources 

of energy are still being researched and tested. Technologies 

are continually being developed and enhanced to improve 

energy sources. In our work, we focus on the solar energy 

since it can be assumed constant on average in a long term 

perspective. 

In a REH (Real-time Energy Harvesting) system, we have to 

make the best use of the available power and the goal of a 

scheduler is to assign the tasks (programs) to time slots such 

that all timing and power constraints are satisfied every time. 

We then say that the system operates in an energy neutral 

mode by consuming only as much energy as harvested [4]. 

In this paper, we will describe how to dynamically man

age power in a single processor REH system where tasks 

are scheduled according to the famous preemptive dynamic 

priority policy, Earliest Deadline First (ED F). 

The intuition behind the proposed scheme is to run tasks as 

long as the energy storage is sufficient to provide energy for 

all future occurring tasks, considering their timing and energy 

requirements and the replenishment rate of the storage unit. 

When this condition is not verified, the processor has to be 

idle so that the storage unit recharges as much as possible and 

as long as the system will be able to meet all the deadlines. 

The rest of the paper is organized as follows: We first 

present the necessary background and related work in Section 

II. We outline the models in Section III and crucial concepts 

including the slack energy in Section IV. In Section V, 

we present EDeg scheduler. Section VI is concerned with 

experimental results. Finally, we conclude the paper in Section 

VII. 

II. RELATED WORK AND NECESSARY BACKGROUND 

Researchers started to address power and scheduling issues 

in the last decade but most of them do not consider both 

recharge ability of the batteries and real-time constraints. In 

the work by Allavena et al. in [1], power scavenged by the 

energy source is constant and all tasks consume energy at a 

constant rate. Later in [5], Moser et al. propose LSA (Lazy 

scheduling Scheduling Algorithm) to optimally schedule tasks 

with deadlines, periodic or not. In that work, the total energy 

consumption of every task is directly connected to its execu

tion time through the constant power of the processing device. 

But in a real application, instantaneous power consumed by 

tasks may vary along time depending on circuitry and devices 

required by the tasks. Very recently, in [3], we relaxed the 

restrictive hypothesis that links together energy requirement 

and execution time of tasks. We presented an on-line schedul

ing scheme called EDeg. Under energy constraints, simply 

executing tasks according to the EDF rule, either as soon as 

possible (EDS) or as late as possible (EDL) may lead to violate 

some deadlines. E Deg is a variation of ED F that relies on 

two fundamental concepts, namely slack time and slack energy. 
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III. MODELS AND ASSUMPTIONS 

A. Application model 

We consider here a set of independent periodic tasks that 

can be denoted as follows: T = {Ti, i = 1, . . .  , n}. A 

four-tuple (Gi, Ei, Di, Ti) is associated with each Ti. In this 

characterization, task Ti makes its initial request at time ° 
and its subsequent requests at times kTi, k = 1, 2, ... called 

release times. The least common multiple of T1 , T2 , . . .  , Tn 
(called the hyperperiod) is denoted by TLClvI. Each request of 

Ti requires a Worst Case Execution Time (WCET) of Gi time 

units and has a Worst Case Energy Consumption (WCEC) of 

Ei. We assume that the WCEC of a task has no relation with 

its WCET. 

A deadline for Ti occurs Di units after each request by which 

task Ti must have completed its execution. We assume that 

° < Gi :s; Di :s; Ti for each 1 :s; i :s; n. 
Tasks are scheduled on a single processor system. Task set 

T is said to be feasible if all tasks meet the deadlines. 

B. Energy model 

We assume that ambient energy is harvested and converted 

into electrical power. We cannot control the energy source but 

we can predict the expected availability with a lower bound on 

the harvested source power output, namely Ps (t) . This power 

is then the instantaneous charging rate that incorporates all 

losses caused by power conversion and charging process. It is 

stored in a device with capacity G. 
The stored energy at current time t is denoted as E (t) . It 

can be measured with reasonable accuracy, used at any time 

later with no leak over time. We assume that energy production 

times can overlap with the consumption times. 

IV. FUNDAMENTAL CONCEPTS 

A. Slack time 

The slack time of a hard deadline task set at current time 

t is the length of the longest interval starting at t during 

which the processor may be idle continuously while still 

satisfying all the timing constraints. Slack time analysis has 

been extensively investigated in real-time server systems in 

which aperiodic (or sporadic) tasks are jointly scheduled with 

periodic tasks [2]. In these systems, the purpose of slack time 

analysis is to improve the response time of aperiodic tasks 

or to increase their acceptance ratio. A means of determining 

the maximum amount of slack which may be stolen, without 

jeopardizing the hard timing constraints, is thus a key to 

the operation of the so-called slack-stealing algorithms. 

Determining slack time is realized at run-time by computing 

the so-called dynamic EDL(Earliest Deadline as Late as 

possible) schedule [2]. 

Illustrative Example: 

Consider a periodic task set r that is composed of three tasks, 

r = {Ti 11:S; i:S; 3} andTi = (Gi, Di, Ti) . LetTl = (1, 5, 6), 
T2 = (2, 8, 10) and T3 = (4, 11, 15). Before beginning to 

schedule the task set r, we must verify the timing feasibility 

o Execution of tasks under EDF 

t Release Time t Deadline 

Fig. 1. Computing Slack Time 

condition. The processor utilization Up = 2:�=o g; = �6 :s; 1, 
consequently the necessary feasibility condition related to 

timing constraints, Up :s; 1 is satisfied. Hence the total slack 

time that can be used is equal to 11. We begin scheduling the 

task set r according to EDS until t = 8 where we have to 

insert a slack time. 

To determine the slack time at time t = 18, we first 

compute the static EDL schedule for the interval [0, 30]. 
That means we have to compute the static deadline 

vector lC and the static idle time vector V [2]. We 

note that lC (0, 5, 8, 11, 17, 18, 23, 26, 28, 29) and 

V = (3, 0, 0, 4, 0, 3, 0, 0, 0, 1). 
Determining the slack time at time t = 18 is realized at 

run-time by computing the so-called dynamic EDL schedule 

precisely defined by the dynamic deadline vector lC (t) and 

the dynamic idle time vector V (t) [2]. Figure 1 enables 

us to verify that lC (t) = (18, 23, 26, 28, 29) and V (t) 
(4, 2, 0, 0, 0, 1) and consequently the slack time is equal to 

4. In what follows, we will use the idea of slack time to 

recharge the energy storage capacity whenever it is insufficient 

to execute more tasks. 

B. Slack energy 

On the other hand, slack energy is the maximum amount 

of energy that can be consumed from a given time t while 

still satisfying the timing and energy requirements of all 

the future occurring tasks. Slack energy must be computed 

by taking into account all periodic instances which have a 

deadline less than or equal to d, the deadline of the highest 

priority instance ready at current time t. 
As total energy produced by the source within [t, d] is 

ltd Ps (t)dt, Slack_energy (t) = E (t) + ltd Ps (t)dt - A 
where A is the energy demand required by the periodic task 

instances ready to be executed within the interval [t, d) . 

Illustrative Example: 

Consider the above example. Now, we introduce the 

energy consumption of tasks. r = {Ti I 1 :s; i :s; 3} and 

Ti = (Gi, Di, Ti, Ei). Let T l = (1, 5, 6, 12), T2 = (2, 8, 10, 15) 
and T3 = (4, 11, 15, 22) (figure 2). We assume that the energy 

storage capacity is G = 25 energy units at t = 0. For 

simplicity, we assume that the rechargeable power is constant 
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along time with (Fs = 5). Before beginning to schedule the Algorithm 1 Earliest Deadline with energy guarantee algo

rithm (EDeg) 

o Execution of tasks under EDF 

t Release Time + Deadline 

T1 is released after t=10 
and has deadline <18 

Fig. 2. Computing Slack Energy 

task set r, we must verify the energy feasibility condition. 

Ue = 2:�=0 g; = 

1
3� <::: 5. Consequently, Ue <::: Fs . 

Under EDeg, slack energy is computed whenever the 

highest priority task ready to be executed can be preempted 

by a task requiring energy. From time 0 until t = 10, tasks 

are executed according to EDS and the energy level is given 

by E(10) = 14 energy units. At t = 10 (figure 2), T2 is the 

highest priority task. Slack energy is then computed from all 

task instances released after t = 10 with deadline less than or 

equal to deadline of T2 equal to 18. 

SlacLenergy(lO) = E(10)+j
18 

Fsdt-E1 -E2 = 22 (1) 
10 

Since slack energy is positive, T2 can start execution while 

still guaranteeing sufficient energy for all future occuring task 

instances. 

V. THE EDeg ALGORITHM 

We present hereafter a new scheduler based on the two 

previous concepts in order to enhance performance of classical 

EDF. 

A. Presentation of the Algorithm 

EDeg (Earliest Deadline with energy guarantee) runs tasks 

according to the earliest deadline first (ED F). We consider 

that a task can consume energy with any power. This means 

that before executing a task, we must ensure that the energy 

storage is sufficient to execute this task during at least one 

time unit. When there is no sufficient energy in the storage 

unit, the processor has to remain idle so that the storage unit 

recharges entirely (E(t) = Emax) but making sure that there 

is sufficient slack time. 

Thus, the three major components of EDeg algorithm are 

E(t), Slack_energy(t) and Slack_time(t) where E(t) is 

the amount of energy that is currently stored at time t. 
FEN DING is a boolean which equals true whenever there is 

at least one task instance ready to be executed. Also, we define 

the function waitO to put the processor in the idle state and 

the function executeO to put the processor to run the ready 

job with the earliest deadline. The framework of the EDeg 
scheduling algorithm is as follows: 

Input: A Set of Periodic Tasks T { Ti I Ti 
(Ci, Di, Ti, Ei) i 1, . .  ·, n} According to EDF, 

current time t, battery with capacity ranging from Emax 
to Emin, energy level of the battery E(t), source power Fs (t). 

Output: EDeg Schedule. 

1: while (1) do 

2: while PENDING=true do 

3: while (E(t) > Emin and Slack_energy(t) > 0) do 

4: executeO 

5: end while 

6: while (E(t) < Emax and Slack_time(t) > 0) do 

7: waitO 

8: end while 

9: end while 

10: while PENDING=false do 

II: waitO 

12: end while 

13: end while 

From the EDeg algorithm, we notice the following: First, 

we never run out of storage, that means we always check 

for sufficient energy in the battery before executing any task 

instance. Second, the processor is only entered in the idle 

state when either the battery is empty or there is no more 

sufficient energy to guarantee the feasible execution of all 

future occurring tasks. Third, we recharge the battery to the 

maximum level when there is sufficient slack time. We only 

stop recharging when there is no more slack time or the battery 

is fully replenished. We can easily detect this condition by 

using an interrupt mechanism and adequate circuitry between 

storage unit and processing device. Finally, we only lose 

recharging power when there are no pending instances and 

the battery is fully recharged. 

B. Efficiency 

Complexity of an on-line algorithm is an evaluation of 

overheads that are produced when this algorithm actually 

runs. So, in a hard real-time context where all the tasks must 

imperatively meet their timing requirements, it is of more 

practical interest to make use of an algorithm which is both 

optimal in terms of scheduling performance and efficient in 

terms of computational complexity. 

Under EDeg scheduling, overheads are mainly induced by 

computating the slack time and the slack energy. Slack time 

is computed solely when recharging the battery. Computing 

slack energy is realized when executing a periodic instance 

while other ones with earliest deadline will occur in the fu

ture. Consequently, complexity of computing the slack energy 

directly depends on the number of preemptions. Higher the 

number of preemptions, higher the overhead induced by the 

scheduler. 
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As shown in [2], the slack time of a periodic task set at a 

given time instant can be obtained on-line by computing the 

dynamic EDL schedule, with complexity O(K.n). n is the 

number of periodic tasks, and K is equal to I �l, where R 
and p are respectively the longest deadline and the shortest 

period of current ready tasks. 

Moreover, the complexity for computing the slack energy is 

O(K.n). As EDeg has low and constant space requirements, 

this makes it easily implementable on many low-power, unso

phisticated hardware platforms including micro-controllers. 

A suggestion to improve the efficiency of the scheduler in 

terms of overhead is to make some computations off-line. We 

can compute statically a lower bound on the slack time and a 

lower bound on the slack energy and use these approximation 

values at run time. The consequences will be only to stop 

charging earlier and to stop executing tasks earlier. And the 

number of tasks preemptions will increase while the processor 

overheads will decrease. 

C. Illustrative Example 

We consider the previous example. We note that r is not 

feasible if tasks are executed as soon as possible according 

to Earliest Deadline since the energy storage becomes empty 

at t = 18 (figure 3) where the system stops immediately. In 

o Execution of tasks under EDF. Processor Idle time under EDeg 

t Release Time t Deadline 

1 

e 

Fig. 3. Task scheduling according to E Deg 

details: 

• According to EDeg, tasks of r are executed as soon as 

possible according to EDF until t = 15 where E(t) = 

12 energy units. 

• At t = 15, slack energy needs to be computed since 

73 is the highest priority task ready to be executed with 

future preemptions. As the slack energy is positive, 73 is 

executed until t = 18 where there is no sufficient energy 

in the battery for execution. The processor is let inactive 

as long as the energy storage has not filled completely 

and the slack time is still positive. 

• At t = 22, the battery is fully replenished (E(22) = 25) 
energy units, 71 is executed till t = 23, where E(t) = 18 
energy units. 

• At t = 23, 73 completes its execution till t = 24 where 

E(t) = 8 energy units. 

• At t = 24, 72 has the highest priority and is executed till 

t = 26, where E(t) = 3 energy units. 

• Now, 71 is ready and has the highest priority. As there 

is no sufficient energy in the battery for execution, the 

processor is let idle for recharging till t = 28 where 

E(t) = 13 energy units. 

• At time t = 28,71 is executed till t = 29, where E(t) = 6 
energy units. 

• Finally, the processor is idle from t = 29 to t = 30 where 

E(t) = 11 energy units. 

VI. EXPERIMENTAL RESULTS 

A. Setup 

We have implemented EDeg in a discrete event simulator 

in C/C++. To evaluate its etlectiveness, we consider several 

task sets, each containing up to 30 randomly generated tasks. 

In this simulator, we implement EDeg with respect to EDS 
and two heuristics EDd_l and EDd_A. Where, EDd_A is the 

Earliest Deadline as Soon as possible scheduler that discards 

ALL the ready instances whenever the storage unit is empty 

and consequently let the processor idle until the next release 

time and EDd_l is the Earliest Deadline as Soon as possible 

scheduler that discards only one instance (the highest priority 

one) whenever the storage unit is empty and then let the 

processor idle until the next release time. 

The rechargeable power Ps is constant and we consider two 

cases: low and high energy utilization. We assume that the 

energy storage is fully charged at the beginning of the sim

ulation. After a deadline violation is detected, the simulation 

terminates for EDL and EDS. Under EDd_l and EDd_A 
the simulation continues until the end of the hyperperiod. 

We compare the performance of the following techniques: 

(i) percentage of feasible task sets, (ii) average idle time and 

(iii) time overhead. 

B. Low Energy Utilization 

We first consider a system that consumes little energy 

relative to energy produced by the environment i.e. Uel Ps = 

0.3 where Ue = ��=1 !f:. 
1) Percentage of Feasible Task Set: We experiment the 

percentage of feasible task sets which are feasible with EDeg 
and not feasible with a greedy algorithm (EDS). We report the 

results of this simulation study where the processor utilization 

Up = {0.3, 0.6, 0.9}. Our simulation depicts the percentage 

of feasible task sets over the energy storage E (t). For each 

task set, we compute Efeas as the minimum storage capacity 

which permits to achieve neutral operation i.e. all tasks are 

executed without violating deadlines and the battery is fully 

recharged at the end of the hyperperiod. When Up = 0.3 
(figure 4), all task sets are feasible under EDeg when the 

feasible energy Efeas = 7100 energy units since EDeg will 

benefit from the idle time to recharge the battery whenever 

the energy storage is insufficient to execute more tasks. On 

the other hand, EDS will need more energy storage than 
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Fig. 4. % of Feasible Task Sets for low energy utilization 

EDeg to guarantee feasibility. In this case, all task sets are 

feasible under EDS when the energy storage is 21300 energy 

units. This means that EDeg can provide the same level of 

performance with a storage unit which is four times less. 

When Up = 0.6 (figure 4), all task sets are feasible under 

EDeg when the feasible energy Ejeas = 10800 energy 

units. Under EDS, all task sets are feasible when the storage 

energy is about 28620 energy units,this means that the storage 

unit must be about 2.65 times bigger with EDS to maintain 

100% feasible task sets compared to EDeg. We observe that, 

the relative performance gain of EDeg in terms of capacity 

savings is decreasing when the processor utilization rate is 

increasing. 

For high processor utilization, the performance gain in ca

pacity savings decreases. This can be proved by our simulation 

since when Up = 0.9, EDeg obtains capacity savings of about 

59% compared to EDS. 
2) Average Idle Time: The schedule produced by any 

scheduling algorithm can be characterized by the average 

duration of idle time intervals or the average number of idle 

time intervals in a given time window such as the hyperperiod 

of the schedule. Lower is the number of idle time intervals, 

lower will be the energy spent in transferring the processor 

from the inactive state to the active state. Let us note that new 

generation processors use dynamic power management (DPM) 

mechanisms. Using such mechanism can greatly enhance the 

performance of the system since it consists in putting off the 

processor whenever the processor has no task to execute. How

ever, this mechanism consumes energy and will be efficient as 

long as the processor remains inactive during a sufficiently 

long period. 

In this section, we compute the total number of idle time 

intervals for EDeg, EDd_A and EDd_l by varying the 

processor utilization Up. In order to get an objective measure

ment we take into account the percentage of deadlines being 

satisfied. Figure 5 gives a measurement of the total number 

of idle time intervals weighted by the percentage of deadlines 

being satisfied. 

O.35��-�-�-�-�-�-��==;-

:g 0.2 
'0 
1: 
� 0.15 

� 
I 

0.1 
• 

� 0.05 

Fig. 5. Idle time intervals for Low Energy Utilization 

The total number of idle times in EDeg is lower than that 

of EDd_A and EDd_l since EDeg will benefit from the 

maximum time used to recharge the battery at the maximum 

level. As a result, the average idle time in EDeg will be greater 

than that of EDd_A and EDd_l and consequently the total 

number of idle times is smaller. 

Consequently, short idle intervals that result in leakage 

are avoided with EDeg. And EDeg will have low energy 

overhead coming from transferring the processor from the 

inactive state to the active state. 

3) Time Overhead: This experiment explores the time 

overhead of EDeg i.e time spent to compute both slack 

energy and slack time. The objective is to prove that the gain 

in performance (from the above sections) is higher than the 

cost incurred by its implementation. Let us recall that EDF 

has no overhead (except due to preemptions and context 

switches) since no on-line computations are required. 

In the following, we measure the time overhead as the number 

of slack time and slack energy computations divided by the 

number of task instances. Under EDeg, for low values of 

Up, the time overhead is low (figure 6). As Up increases, 

the time overhead increases. Nevertheless, it remains low 

even for Up = 0.9. Slack time computations are performed 

whenever the processor needs to be idle because of no 

more energy. For low energy utilization, overhead to due 

slack time computations is consequently low. Slack energy 

computations are performed whenever a task is preempted by 

at least one higher priority task. Higher is Up, higher is the 

number of task instances and so the number of preemptions 

and consequently higher is the overhead due to slack energy 

computations. 

C. High Energy Utilization 

Let us consider a system with high energy utilization i.e. 

Ue/ Ps = 0.9. That means that the periodic task set consumes 

90% of the energy produced by the environment. 
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1) Percentage of Feasible Task Sets: As previously, for each 

task set, we compute Ejeas as the minimum storage capacity 

which permits to achieve neutral operation. Then we begin to 

increase Ejeas until we reach 100% of feasible task sets with 

EDS. When Up = 0.3 (figure 7), all task sets are feasible 
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Fig. 7. % of Feasible Task Sets for high energy utilization 

under EDeg when the feasible energy Ejeas = 10000 energy 

units. This means that the feasible energy is increased by 

29% relative to low energy utilization. This is because as the 

energy utilization increases, the consumed energy increases 

and consequently the minimum storage capacity which permits 

to achieve neutral operation Ejeas increases. On the other side, 

all task sets are feasible under EDS when the energy storage 

is 44000 energy units. This means that EDeg can provide the 

same level of performance with a storage unit which is about 

4.4 times less. 

If we increase Up to 0.6 (figure 7), and run the simulation 

again, we find that all task sets are feasible under EDeg when 

the feasible energy Ejeas = 15200 energy units. Under EDS, 
all task sets are feasible when the storage energy is about 

58000 energy units; that means that the storage unit must be 

about 3.8 times bigger with EDS to maintain 100% feasible 

task sets compared to EDeg. We observe that, the relative 

performance gain of EDeg in terms of capacity savings is 

decreasing when the processor utilization rate is increasing. 

For high processor utilization, the performance gain in ca

pacity savings decreases. This can be proved by our simulation 

since when Up = 0.9, EDeg obtains capacity savings of 

about 45% compared to EDS. That is because when the 

processor utilization is high, the processor rarely has chance 

to be idle to recharge the battery. This results in the decrease 

of performance gain of EDeg in terms of capacity savings. 

When Up = 1, EDeg and EDS are the same since there is 

no chance for E Deg to be idle to save energy. 

As a conclusion, as the energy utilization increases, the 

consumed energy increases and as a result, the energy storage 

needed to achieve feasibility for EDeg increases. This is 

clearly shown in the simulation results since the feasible 

energy in high energy utilization is increased respectively by 

29%, 28% and 25% for Up = 0.3, 0.6 and 0.9 when compared 

to low energy utilization. 

2) Average Idle Time: In this section, we present results of 

simulations performed to compute the weighted total number 

of idle time intervals for EDeg, EDd_A and EDd_1 by 

varying the processor utilization Up from 0.1 to 1. 
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0.45 
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E 
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.i" � 0.1 
" 

0.05 

---B-EDd A 
----4---EDd=1 

Fig. 8. Idle time intervals for High Energy Utilization 

From figure 8, we can rapidly conclude that the total number 

of idle times in E Dd_1 is greater than E Dd_A. 
Depending on the concept of EDeg, when the energy 

storage is empty, the processor has to be idle so that the storage 

unit recharges to its maximum capacity or as much as possible 

and as long as the system will be able to meet all the deadlines. 

For this reason, the total number of idle time intervals must 

be smaller in EDeg than EDd_A and EDd_1. Also, task 

instances are 100% feasible in EDeg and not in EDd_A and 

E Dd_1. Then, by dividing the total number of idle times over 

the percentage of feasible task instances, we will conclude that 

the weighted total number of idle time intervals in EDeg is 

lower than EDd_A and EDd_1 by respectively 71 % and 68%. 

Moreover, for high energy utilization, the consuming energy 

increases and the number of low battery level also increases. 

Thus, the number of idle times increases and consequently 

the average idle time decreases. This is proved by simulations 
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since the average idle time decreases by 45% from low to high 

energy utilization. 

3) Time Overhead: For a realistic scenario, we must 

take the time overhead into consideration. As stated above, 

there is no overhead under ED scheduling. In this ex

periment, we explore the time overhead by varying the 

processor utilization (Up). The chosen values for Up are 

{O.l, 0.2, 0.4, 0.6, 0.8, 0.9}. 
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Fig. 9. Time Overhead for High Energy Utilization 

0.9 

As shown in figure 9, when processor utilization Up in

creases the time overhead increases till it reaches maximum 

value when Up = 0.9. It is important here to note that time 

overhead at Up = 0.9 relative to the total number of feasible 

instances is very low. This means that the gain in performance 

for EDeg is higher than the time overhead. 

Moreover, under high energy utilization, the time overhead 

increases. This is because as energy utilization increases, the 

consumed energy increases and as a result the need to compute 

the slack time increases. Consequently, the time overhead 

increases. This is proved by simulations since the average 

time overhead in high energy utilization increases by about 

47% relative to low energy utilization. 

VII. CONCLUSIONS AND FUTURE WORKS 

In this paper, we presented a scheduler dedicated to embed

ded systems such as wireless sensors which harvest energy 

from the environment. We considered a uniprocessor system 

that execute periodic tasks that consume energy during their 

execution with possibly different instantaneous consumption 

powers. The crucial part of the so-called EDeg scheduling 

algorithm lies on two on-line functions called slack time and 

slack energy. 

The simulation study reports the performance of EDeg, 
primarily measured by the percentage of feasible task instances 

i.e. percentage of task that meet their timing requirements 

expressed in terms of deadlines. The study shows that EDeg 
outperforms the classical and well known Earliest Deadline 

First scheduler. Moreover, we demonstrated that the overhead 

of EDeg remains acceptable which makes it a practicable 

scheduler. 
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