
EH-EDF: An On-line Scheduler for Real-Time
Energy Harvesting Systems

Hussein EL Ghor∗, Maryline Chetto∗ and Rafic Hage Chehade†
∗IRCCyN Lab

University of Nantes, Nantes, France
Email: elghorh@irccyn.ec-nantes.fr

maryline.chetto@univ-nantes.fr
†IUT Saida

Lebanese University, Saida, Lebanon
Email: rhagechehade@ul.edu.lb

Abstract— In this paper, we undertake the problem of on-line
real-time scheduling in a uniprocessor platform that is powered
by a renewable energy storage unit and uses a recharging system
such as photovoltaic cells. Since executing tasks require a certain
amount of energy, we must take into account the characteristics of
the energy source, capacity of the energy storage as well as energy
consumption of the tasks, and time. For this sake, we present a
scheduling algorithm called EH − EDF (Energy Harvesting -
Earliest Deadline First). In such algorithm, scheduling decisions
are taken at run-time without having any prior knowledge about
the characteristics of the future energy production and task
characteristics.

I. INTRODUCTION

A scheduling algorithm is said to be on-line if its decisions
are taken at run-time without having any prior knowledge
about the characteristics of the future tasks [1].

When dealing with real-time systems that take time as the
only limitation, we have to differentiate between underloaded
and overloaded real-time systems. A real-time system is said
to be underloaded if there exists a feasible schedule for the
workload. It is important here to indicate that EDF (Earliest
Deadline First) algorithm is optimal in underloaded hard real-
time systems. This means that EDF is guaranteed to meet
all the task deadlines. On the contrary, overloaded real-time
systems does not have a feasible schedule where all tasks meet
their deadlines. In this case, the objective will be to maximize
the performance of the system. Here, we focus on underloaded
real-time systems where energy is the most important limiting
factor.
Recently, we presented a scheduling algorithm called EDeg
(Earliest Deadline with energy guarantee) [6]. In such algo-
rithm, we assume that the set of tasks to be scheduled is well
known off-line. It is effectively the case when the system is
only composed of periodic tasks. EDeg algorithm is called
clairvoyant algorithm since it must know in advance both
the energy source profile and the characteristics of the tasks
(arrival time).
The work presented in this paper is the on-line version of the
EDeg algorithm. The advantage of this scheduler is that it is
completely on-line while EDeg is totally clairvoyant. Now,

we are studying an algorithm which ignores the future energy
production and only knows the consumption of tasks which
are already released on the machine.
The rest of this paper is organized as follows. We first present
the related work necessary background in Section II. Section
III introduces the models and terminology used in this paper.
Fundamental concepts are described in section IV. Section V is
the presentation of EH−EDF scheduling algorithm. Finally,
we conclude the paper in Section VI.

II. RELATED WORK

Over the past years, a significant amount of researchers have
focused their attention on the design of competitive on-line
scheduling algorithms as well as on the inherent limitations
of these algorithms. Most of works have disregarded an
important aspect, namely energy management or have assumed
that the energy capacity is sufficient to execute all tasks. In
this domain, the Earliest Deadline First is the most notable
scheduling algorithm [7], this is because of its optimality.
EDF is an on-line algorithm that schedules at each instant of
time t, the ready task with a deadline closest to t.
Now, energy constraint is added as an important factor when
addressing real-time scheduling problems. This is mainly
because of the great advances in both hardware and software
technology that have enabled system designers to develop
large, complex embedded systems. Such systems consume
a large amount of power and rely mainly on a limited
energy storage. Under these new conditions, hundreds of
research work were done either to minimize the total energy
consumption without violating deadlines or to maximize the
performance of hard energy constrained systems with a fixed
energy budget that is not sufficient to meet al deadlines.
Very recently [4], we presented a scheduling algorithm, EDeg
(Earliest Deadline with energy guarantee), that takes into
consideration the limits of both time and energy. EDeg relies
on two basic concepts: slack time and slack energy. The main
idea behind EDeg is to run tasks according to the earliest
deadline first rule. However, before authorizing a task to
execute, we must ensure that the energy storage is sufficient to
execute all future occurring tasks. When this condition is not

978-1-4577-1846-5/11/$26.00 ©2011 IEEE 776

verified, the processor has to stay idle so that the storage unit
recharges as much as possible and as long as all the deadlines
can still be met despite execution postponement. Later in [6],
same authors proved by performance evaluations the efficiency
of this scheduler. However, EDeg is a clairvoyant algorithm
since it needs the characteristics of the future tasks and the
energy source profile to build an optimal schedule.

III. MODEL AND TERMINOLOGY

We consider a uniprocessor system that is composed of
aperiodic tasks that are known by the system at the time of
their arrival. An aperiodic task set can be denoted as follows:
Ψ = {Ti, i = 1, · · · , n}. Every task Ti is characterized by
(ri, Ci, Ei, Di) where ri is the arrival time of task Ti. Each
request of Ti requires a Worst Case Execution Time (WCET)
of Ci time units and has a Worst Case Energy Consumption
(WCEC) of Ei. We assume that the WCEC of a task has no
relation with its WCET. A deadline for Ti occurs Di units after
each request by which task must have completed its execution.
We assume that 0 < Ci < Di for each 1 ≤ i ≤ n. We define
the processor load as Lp =

∑n
i=1

Ci

Dmax
and the energy load

as Le =
∑n

i=1
Ei

Dmax
where Dmax is the longest deadline in

the task set Ψ.
Lp is the percentage of processing time if tasks of Ψ are

solely executed on the device. One can interpret the energy
load Le, measured in joules/s, as the average power consumed
by Ψ when executing on the device.

A. Energy Source

We assume that ambient energy is harvested and converted
into electrical power. We cannot control the energy source
but we can predict the expected availability with a lower
bound on the harvested source power output, namely Ps(t).
Generally, the harvested power is time-varying including solar
energy which can be assumed constant on average in a long-
term perspective. However, on a short-term perspective, the
harvested power is highly unstable. This power is then the
instantaneous charging rate that incorporates all losses caused
by power conversion and charging process. Clearly, we make
no assumption about the nature and dynamics of the energy
source, making our approach more easily implemented in
real systems where data about the energy source may not be
available beforehand.

B. Energy Storage

We consider a uniprocessor system that uses an ideal energy
storage unit (supercapacitor or battery) of nominal capacity
E, corresponding to a maximum energy (expressed in Joules
or Watts-hour). The energy level has to remain between two
boundaries Emin and Emax with E = Emax − Emin. The
stored energy may be used at any time later and does not
leak any energy over time. If the storage is fully charged, and
we continue to charge it, energy is wasted. In contrast, if the
storage is fully discharged, no task can be executed.

C. Definitions

To be more clear, we include several definitions and terms
that are used in this paper.

DEFINITION 1: An algorithm is said to be on-line if its
scheduling decisions are taken at run-time without having any
prior knowledge about the characteristics of the future tasks.

DEFINITION 2: An algorithm is said to be clairvoyant if
it knows in advance the arrival time of the tasks and the
energy profile produced by the source. Otherwise, it is non-
clairvoyant.

IV. FUNDAMENTAL CONCEPTS

A. Slack Time

By definition, slack time of a hard deadline task set at
current time t is the length of the longest interval starting at
t during which the processor may be idle continuously while
still satisfying all the timing constraints. Slack time analysis
has been extensively investigated in real-time server systems
in which aperiodic (or sporadic) tasks are jointly scheduled
with periodic tasks [3]. In these systems, the purpose of slack
time analysis is to improve the response time of aperiodic tasks
or to increase their acceptance ratio. A means of determining
the maximum amount of slack which may be stolen, without
jeopardizing the hard timing constraints, is thus key to the op-
eration of the so-called slack-stealing algorithms. Determining
slack time is realized at run-time by computing the so-called
dynamic EDL (Earliest Deadline as Late as possible) schedule
[3].
In this work, we consider that tasks are aperiodic and known
by the system at the time of their arrival. So, we are obliged to
schedule tasks according to an on-line scheduling algorithm.
In this case, we compute the slack time based on the tasks
that are ready at current time t.

Let us consider a task set Ψ of aperiodic tasks. Ψ = {Ti, i =
1, · · · , n}. Every task Ti is characterized by (ri, Ci, Ei, Di).
Denote Ψ′ as the set of ready tasks at current time t. Then the
slack time at current time t is computed as:

Slack.time(t) = min
1≤j≤n

(Dj − sum(Ci | Di < Dj)) (1)

B. Illustrative Example

Consider a task set Ψ = {Ti, i = 1, · · · , 4 and Ti =
(ri, Ci, Di)}. Let T1 = (0, 3, 18), T2 = (4, 2, 12),T3 =
(5, 3, 24),T4 = (0, 4, 16) and T5 = (8, 3, 20). We assume that
we have to calculate the slack time at time t = 6. We note
that Lp =

∑n
i=1

Ci

Dmax
= 5

8 < 1.
By scheduling the task set Ψ according to EDF , we first
execute T4 from time t = 0 to 4 and then T2 from time
t = 4 to 6. Now we have to compute the slack time at time
t = 6. It is obvious that tasks T1 and T3 are ready at this time.
According to equation 1, we have to compute the slack time
for the ready tasks and then the minimum of these slack times
will be the slack time at time t = 6.

777

Fig. 1. Slack time at time 6

V. ENERGY HARVESTING-EARLIEST DEADLINE FIRST
(EH-EDF) SCHEDULING ALGORITHM

In this section, we consider that we are obliged to schedule
tasks according to an on-line algorithm that ignores the future
energy production and the arrival time of tasks. It knows
only the energy consumption of tasks that are released on the
processor.

A. Presentation of the Algorithm

The intuition behind EH −EDF algorithm is to schedule
aperiodic tasks as soon as possible according to EDF .
We take a hypothesis that a task can consume energy with any
power. In this case, and before attempting to execute a task,
we must ensure that there is a sufficient energy to execute it.
When the battery becomes empty or unable to execute a task,
we have to compute the slack time (Slack.time(t)) based on
the tasks presented in the list. The scheduler will then let the
processor idle until the battery replenishes or the slack time
becomes zero. We must note that during recharging, when a
new task arrives, we must insert it in the list, update slack
time and continue to let the processor idle.
The advantage of this scheduler is that it is completely on-line
while EDeg is totaly clairvoyant.
Following the idea described above, we propose the Energy
Harvesting - Earliest Deadline First (EH−EDF) algorithm.

The major components of the EH − EDF algorithm
are: E(t) and Slack.time(t). In details, t is the current
time, E(t) is the residual capacity of the storage unit at
time t i.e. the energy that is currently stored. We define
Slack.time(t) as the slack time at time t. We use the
function wait() to put the processor to sleep and function
execute() to put the processor to run the ready job with EDF .

The framework of the EH − EDF scheduling algorithm is
as follows:

EH − EDF charges the energy storage to the maximum
level provided there is sufficient slack time. Slack time is
computed when entering the wait state and decremented at
each time instant. We stop charging the storage unit as soon
as there is no more slack time or the storage unit is fully

Algorithm 1 [Energy Harvesting-Earliest Deadline First
(EH − EDF)]
Input: A Set of aperiodic Tasks Ψ = {Ti|Ti =
(ri, Ci, Di, Ei) i = 1, · · · , n} According to EDF , current
time t, battery with capacity ranging from Emin to Emax,
energy level of the battery E(t), source power Ps(t).
Output: EH−EDF Schedule.

1: t = 0
2: while (1) do
3: while E(t) > 0 do
4: /*Execute Tasks according to EDF*/
5: execute()
6: t = t + 1
7: if t=arrival time of Ti then
8: insert Ti in the list of ready tasks
9: end if

10: end while
11: /*If E(t) ≤ 0, then we have to compute the slack time*/
12: Compute Slack.time(t)
13: /*Measure the energy storage after recharging it for

time (Slack.time(t))*/
14: while E(t) < Emax and Slack.time(t) > 0 do
15: wait()
16: t = t + 1
17: if t=arrival time of Ti then
18: insert Ti in the list of ready tasks
19: update Slack.time(t)
20: end if
21: end while
22: end while

replenished. Such condition can be easily detected through an
interrupt mechanism and adequate circuitry between storage
unit and processing device. Therefore, we waste recharging
power only when there are no waiting tasks in the ready list
and the storage unit is full.

B. Illustrative Example

Consider a task set Ψ with five aperiodic tasks as in the
above example such that Ψ = {Ti|1 ≤ i ≤ 5} where
Ti = (ri, Ci, Di, Ei). Let T1(0, 3, 18, 9), T2(4, 2, 12, 12),
T3(5, 3, 24, 7), T4(0, 4, 16, 10) and T5(8, 3, 20, 9). The energy
storage capacity is assumed to be equal to 10 energy units. For
sake of simplicity, the rechargeable power, Ps is constant along
time and equals 2. The processor load Lp =

∑n
i=1

Ci

Dmax
=

15
24 < 1 and the energy load Le =

∑n
i=1

Ei

Dmax
= 47

24 < Ps =
2.
By scheduling the task set Ψ according to EDF without
energy constraints, it is clear that Ψ is temporally feasible.
On the contrary, when energy constraints are taken into
consideration, Ψ reveals to be not feasible since the storage
becomes empty at t = 6. When applying EH −EDF (figure
2), the task set Ψ is scheduled according to EDF from t = 0
till t = 6 where the energy storage capacity is empty. Then, we
have to insert a processor idle time for recharging the storage.

778

Fig. 2. Illustrative example on EH − EDF

The time of recharging is computed from the current slack
time of the task set in order to still guarantee all the deadlines
while avoiding energy overflow. In details, the energy storage
is full at time t = 0, T4 is the highest priority task and it
is executed according to EDF until t = 4 where the energy
storage capacity E(t) = Emax−E1 +PsC1 = 8 energy units.
At time t = 4, T2 is ready and has the highest priority, it is
executed until t = 6, where the energy storage is empty. As
the storage is empty, the processor has to remain idle as long
as the storage has not fulfilled and the slack time is not zero.
According to equation 1, we have to compute the slack time
of all released tasks and then the slack time of the system will
be the minimum of the computed slack times. At t = 6, T1

and T3 are released. Thanks to equation 1, The slack time of
T1 and T3 is equal to 9 and 15 respectively. Therefore, the
Slack.time(t = 6) = 9. Consequently, the processor has to
stay idle until t = 15 and the energy storage is recharged. But
it is important to note that at t = 8, task T5 is released and
therefore, we have to update the slack time. The slack time
for T5 is 6. As a result, the Slack.time(t = 8) = 6, that is
the minimum of the slack times. The battery is recharged until
t = 11 where it is full. Thus we stop recharging for not losing
any wasted energy.
At t = 11, the energy storage is equal to 10 energy units
and T1 has the highest priority. It is executed until t = 14
and the remaining energy E(t) = 7 energy units. T5 is then
the highest priority task and is executed until t = 17 where
E(t) = 4 energy units. At t = 17, T3 is the highest priority
task, and it is executed until t = 20 where the remaining
energy E(t) is equal to 3 energy units. The processor now
has no tasks to be executed and the processor has to remain
idle until t = 24 where the battery capacity is full again.
In contrast to EDF , EH −EDF feasibly schedules the task
set Ψ, given the characteristics of the storage unit and the
power source profile.

VI. CONCLUSION

We presented in this article the framework of an on-line
monoprocessor scheduling algorithm, namely EH − EDF .

The advantage of this scheduler is that it is completely on-
line and not clairvoyant such as EDF . The future work will
focus on the performance of EH − EDF relative to non-
idling schedulers such as EDF and to an optimal clairvoyant
scheduler.

ACKNOWLEDGMENT

The work presented in this paper is sponsored by CEDRE
project which corresponds to a bilateral collaboration between
University of Nantes and the Lebanese University.

REFERENCES

[1]Allan Borodin and Ran El-Yaniv, Online computation and competitive
analysis. Cambridge University Press, Cambridge, 1998.

[2]Buttazzo G. Hard real-time computing systems: predictable scheduling
algorithms and applications, 2nd edition. Springer, Berlin, 2005.

[3]M. Silly-Chetto, The EDL Server for scheduling periodic and soft
aperiodic tasks with resource constraints. The Journal of Real-Time
Systems, 17: 1-25, 1999.

[4]M. Chetto and H. Ghor, R eal-time scheduling of periodic tasks in a mono-
processor system with rechargeable energy storage. WIP Proceedings of
the 30th IEEE Real-Time Systems Symposium, December 2009.

[5]V. Devadas, F. Li, H. Aydin, Competitive analysis of online scheduling
algorithms under hard energy constraint, Real-Time Systems, Volume 46,
pp. 88-120, 2010.

[6]H. El Ghor, M. Chetto and R. Hajj Chehade, A Real-Time Scheduling
Framework for Embedded Systems with Environmental energy Harvesting,
In Computers & Electrical Engineering, 2011.

[7]C.-L. Liu, J.-W. Layland, Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the Association for Computing
Machinery, Volume 20, Issue 1, pp. 46-61, 1973.

779

