
Energy-Aware Fault-Tolerant Real-Time
Scheduling for Embedded Systems

Hussein El Ghor1(B), Julia Hage2, Nizar Hamadeh1, and Rafic Hage Chehade1

1 LENS Laboratory, Faculty of Technology,
Lebanese University, B.P. 813, Saida, Lebanon

husseinelghor@ul.edu.lb
2 Faculty of Technology, Lebanese University, B.P. 813, Saida, Lebanon

Abstract. In this paper, we investigated the problem of developing
scheduling techniques for uniprocessor real-time systems that enhances
energy saving while still tolerating up to k transient faults to preserve
the system’s reliability. Two scheduling algorithms are proposed: The
first scheduler is an extension of an optimal fault-free energy-efficient
scheduling algorithm, named ES-DVFS. The second algorithm aims to
decrease the consumption of energy by using the slack time for the recov-
ery operation when faults occur. The experimental results show that the
proposed approach significantly reduces the consumption of energy when
compared to the previous schedulers.

Keywords: Real-time scheduling · Fault-tolerant · Checkpointing ·
Energy management · Energy harvesting

1 Introduction

Many embedded real-time systems usually operate in harsh environments. To
function correctly, they have to respect the timing constraints and at the same
time decrease energy consumption even in the presence of faults. Therefore,
besides their timing and energy constraints, these systems usually have serious
fault-tolerant limitations.

Energy management is achieved by the most popular solution, namely
dynamic voltage and frequency scaling (DVFS) [1,2], with the aim to reduce
energy consumption during system operation and to prolong the battery lifetime
by dynamically scaling down the processor supply voltage as much as possible
and without violating the tasks deadlines.

In reality, processor faults can be categorized as: transient and permanent
faults [3]. We focus in this paper on the transient fault since, in most computing
systems, the majority of errors are due to transient faults [4]. In the case of
an energy-efficient system, reliability also means ensuring that the system will
never be short of energy to ensure its treatment. Anticipation of possible cases
of energy can, again, be implemented on the basis of the flexibility offered by
the system at the level of execution of tasks.
c© Springer Nature Switzerland AG 2020
M. S. Bouhlel and S. Rovetta (Eds.): SETIT 2018, SIST 147, pp. 194–203, 2020.
https://doi.org/10.1007/978-3-030-21009-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21009-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-21009-0_18

Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems 195

In this work, we focused on the problem of real-time scheduling under reli-
ability and energy constraints. Its about considering real-time jobs that have
needs which are expressed, on the one hand, in terms of processing time and
energy consumed by the processor and, on the other hand, in terms of the num-
ber of tolerated faults. A job configuration is energy overloaded, this means that
the amount of energy consumed is greater than the amount of available energy.
In addition, the amount of execution time requested is smaller than the available
capacity, the system will therefore typically be able to meet all its deadlines or
else catastrophic consequences will occur. A major question that needs to be
answered is: how to schedule real-time jobs with energy constraints where the
system keeps reliable and able to tolerate up to k faults.

To answer this question, we first propose a uniprocessor Earliest Deadline
First (EDF) scheduling algorithm and we then derive an exact and efficient fea-
sibility condition by considering energy management and fault-tolerance. Second,
the proposed algorithm is derived to achieve energy autonomous utilization of
the processor while respecting deadlines of each task in the task set.

The rest of the paper is organized as follows. In the next section, we summa-
rize the related work. In Sect. 3, we present the model and terminology. The fault
tolerant speed schedule was then presented in Sect. 4. Section 5 shows through
experimental results the energy savings of the proposed algorithms and Sect. 6
concludes the paper.

2 Related Work

In both industry and academia fields, researchers have found some techniques to
enhance energy saving in embedded systems. Among these, DVFS has risen as
one of the best framework level methods for energy consumption. DVFS schedul-
ing reduces the supply voltage and frequency when conceivable for preserving
energy consumption. Subsequently, a large number of procedures considering
the issue of limiting the consumption of the needed energy without violating the
timing constraints on uniprocessor systems are widely presented in literature
for different task models. Many of the previous work that studied the problem
of energy efficient frameworks for real-time embedded systems apply the DVFS
technique to reduce the processor energy consumption [5–8].

In [6], authors proposed a DVFS scheme under EDF scheduling policy to
decrease dynamic power consumption for real-time systems. In [8], we settle the
hypothesis for energy consumption in real-time systems, we proposed an energy
efficient real-time scheduling algorithm of aperiodic tasks for wireless sensors.
Specifically, we applied the concept of DVFS technique to the process of real-time
scheduling. Further, we proposed in [9] an energy guarantee real-time scheduling
algorithm that applies the DVFS technique targeting energy harvesting systems.
We show that our scheduler achieves capacity savings when compared to other
schedulers.

On the other side, fault tolerance objectives are of uppermost importance
for embedded systems [10]: system failures can occur in real-time computing

196 H. El Ghor et al.

systems and can result in hardware errors and/or deadline misses. It was found
that the most common errors in computing systems are soft errors, and hence
most researches target their work on soft errors to present fault tolerant systems.
Such research efforts produced scheduling algorithms with the joint consideration
of energy and timing constraints in fault tolerant systems.

More recently, Zhao et al. [11] presented the Generalized Shared Recovery
(GSHR) technique to reserve computing resources, which can be used by other
tasks to enhance the energy efficiency. Later, this work was extended to be
applied to a real-time periodic task model [10]. The proposed algorithms aim
to determine the processor scaling factor and the reserved resources for every
task to enhance the minimization of energy while still guaranteeing the reliability
requirement at the task-level. The advantage of the GSHR scheduler comes from
the fact that the reliability of the system can be increased when applying the
DVFS technique.

Recently, Han et al. developed effective scheduling algorithms that can save
energy when considering that the proposed real-time system can tolerate up to k
failures when scheduling a set of aperiodic tasks on a single processor under the
EDF policy [12]. For this sake, authors proposed three algorithms: The first two
algorithms are based on the previous work performed in [6]. The third algorithm
extends the first two by considering that the computing resources are no longer
reserved and hence better energy saving performance can be achieved. The main
drawback of this work is that the problem of improving the system reliability in
presence of failures cannot be solved by a simple modification to the work done
in [6].

3 Model and Terminology

We consider the system model and their corresponding notations. Then, we
present the problem formulation.

3.1 Task Model

We consider a set of n independent aperiodic real-time jobs J = {J1, J2, · · · , Jn},
where Ji denotes the ith job in J and is characterized by a three tuple (ai, ci, di).
The definition of these parameters are as follows:

– ai is referred to the arrival time, this means that the time when job Ji is
ready for execution.

– ci is referred to the worst case execution time (WCET) under the maximum
available speed Smax of the processor.

– di is considered as the absolute deadline of job Ji.

We denote the laxity of the job Ji by di − (ai − ci). We consider that the job set
J is said to be feasible in the real-time manner and under fault-free scenario.
In other words, there exists a feasible schedule for J in abscence of energy
considerations, where all deadlines in are respected.

Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems 197

3.2 Power and Energy Model

We assume the speed/frequency of the processor is equipped with a DVFS-
enabled with N discrete frequencies f ranging from fmin = f1 ≤ f2 ≤ · · · ≤
fN = fmax. We consider the notation processor speed SN , or slowdown factor,
as the ratio of the computed speed to the highest processor speed, this means that
SN = fN/fmax. The CPU speed can be changed continuously in [Smin, Smax].
Consequently, when a job Ji is executed under speed Si, the worst case execution
time of Ji becomes equal to ci/Si.

For embedded systems, the processor and off-chip devices such as mem-
ory, I/O interfaces and underlying circuits mainly consume the major part
of the energy [13]. In this paper, we distinguish between frequency-dependent
and frequency-independent components of the consumed power. Specifically, we
adopt the overall power consumption (P) at a slowdown factor S as follows:

P = Pind + Pdep = Pind + CefSα (1)

Where Pind stands for the frequency-independent power that includes the con-
stant leakage power and the power consumed by off-chip devices [12], which is
independent of the system frequency and supply voltage. Cef is denoted as the
effective switching capacitance. α is the dynamic power exponent, which is a
constant usually larger than or equal to 2.

Pdep is considered to be the frequency-dependent active power, which includes
not only the processor power, but also any power that depends on the processing
speed S. Consequently, the energy consumption of a job Ji that runs at the speed
Si, denoted as Ei(Si), can be expressed as:

Ei(Si) = (Pind + CefSα
i).

ci

Si
(2)

3.3 Energy Storage Model

The used system relies on an energy storage unit (battery or supercapacitor)
with an ideal capacity, namely C, that corresponds to a maximum stored energy.
The energy level of the battery must remain between two predefined boundaries,
namely Cmin and Cmax, where C = Cmax −Cmin. We consider that C(t) stands
for the level of energy in the battery at time t. We state that the stored energy
at any time is less than the ideal storage capacity, this means

C(t) ≤ C ∀ t (3)

3.4 Fault Model

During the execution of any operation on a computing system, both transient
and permanent faults may affect the system due to various reasons, like hardware
defects or system errors. In this paper, we consider only transient faults since
it has been shown to be dominant over permanent faults especially with scaled
technology sizes [14].

198 H. El Ghor et al.

The proposed system can afford a maximum of k transient faults. The used
system is usually able to detect faults when a job ends its execution. We assume
that the energy and time overhead caused by fault detection, denoted as EOi

and TOi respectively, are not negligible and are independent of the variations in
the processor frequency.

Generally, there is not restriction on the occurrence of faults during the
execution of jobs and multiple faults may occur when executing a single job [12].
The fault recovery scheme in this paper is based on re-executing the affected job.
Consequently, Ri stands for the maximum recovery overhead for executing a job
Ji under the maximum speed Smax, which is equal to ci, or Ri = ci. When a
fault occurs during any job execution, say Ji, a recovery job of the same deadline
di is released, which is subject to preemption as well.

4 Fault Tolerant Speed Schedule

4.1 Overview of the Scheduling Scheme

In this section, we present a fault-tolerant DVFS scheduling approach for a
dynamic-priority real-time job set on uniprocessor systems to enhance energy
saving while still guaranteeing the timing constraints. The proposed algorithm
is based on the Energy Saving - Dynamic Voltage and Frequency Scaling (ES-
DVFS) algorithm that we previously proposed in [8].

To better understand tthe proposed approach and before proceeding, we first
state some basic definitions and then briefly reiterate the general concept of ES-
DVFS.

Definition 1. Given a real-time job set J of n independent aperiodic jobs such
that J = {J1, J2, · · · , Jn}.
– J (ts, tf) denotes the job set contained in the time interval φ = [ts, tf], i.e

jobs that are ready to be executed at time ts and with deadlines smaller than
or equal to tf . J (φ) = {Ji | ts ≤ ai < di ≤ tf}.

– W (φ) denotes the overall amount of the jobs’ workload in J (φ) in the time
interval [ts, tf], that means that the total worst case processing time of jobs
completely embedded in the time interval,

W (φ) =
∑

JiεJ (φ)

ci (4)

– The processor load h(φ) over an interval φ = [ts, tf] is defined as

h(φ) =
W (φ)
tf − ts

(5)

– The intensity of jobs in the time interval φ = [ts, tf], denoted as I(φ), is
defined as

I(φ) = max
JjεJ (φ)

(∑
di≤dj

ci

dj − (tf − ts)

)
(6)

Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems 199

– We consider that the fault-related overhead of a time interval φ = [ts, tf],
denoted as Wk(φ) is

Wk(φ) = Wr(φ) + WTO(φ) (7)

Where Wr(φ) stands for the worst-case workload that is reserved to be used
in case of recovery, i.e. Wr(φ) = k × (Rl + TOl) and l represents the index
of the job with the maximum recovery time in J (φ). Jl = {Ji | max(Ri +
TOi), JiεJ (tφ)} and WTO(φ) is considered as the overhead due to fault detec-
tion from regular jobs, i.e.

WTO(φ) =
∑

JiεJ (φ)

TOi (8)

Further, Wk(φ) ≥ Wk−1(φ) for k ≥ 1, since all recovery of jobs have positive
execution times. For this sake, we restrict our work to a k-fault tolerant system
that can exactly tolerate k faults when investigating the worst-case reserved
recovery of fault scenarios.

– The energy demand of a job set J in the interval φ = [ts, tf] is

g(φ) =
∑

ts≤rk,dk≤tf

Ek(Sk) (9)

Given a real-time job set J , ES-DVFS was provably optimal in minimizing
energy consumption in on-line energy-constrained setting by providing sound
dynamic speed reduction mechanisms [8]. The ES-DVFS approach can provide
a feasible energy efficient technique, which is function of the processor frequency
where the time constraints of all jobs in J are still respected. Under this assump-
tion, the ready jobs in the used interval are not executed with fixed speed as the
previous work in [6], but are dynamically adjusted on the fly.

4.2 Concepts for the EMES-DVFS Model

ES-DVFS is optimal in case of fault-free conditions. Hence, To make the above
ES-DVFS fault-tolerant, we adopt a scheduler (we call it MES-DVFS) is to take
into consideration the fault recovery when calculating the effective processor
load and intensity in any interval φ = [ts, tf], i.e. to replace h(φ) and I(φ) with
hm(φ) and Im(φ) respectively, such that

hm(φ) =

∑
JiεJ (φ)

ci + k × Rl

dmax − WTO(φ) − k × TOl
(10)

Where dmax is the longest deadline in J (φ) and WTO(φ) stands for the overall
overheads due to fault-detection for original jobs as defined in Definition 1.

In addition, the intensity of the jobs in J (φ) at current time t is

Im(t) = max
JjεJ (φ)

(∑
di≤dj

ci + k × Rl

dj − t − WTO(φ) − k × TOl)

)
(11)

200 H. El Ghor et al.

When a fault is detected, and for the sake of reducing the total energy consump-
tion for the regular jobs and their recovery copies, MES-DVFS runs the copy of
the recovered job using a defined processor speed (Si ≤ Smax). However, this
may not be energy efficient since, in practice, the fault rate is considered to be
very low.

An extended approach for MES-DVFS (we call it EMES-DVFS), is to execute
the recovery copies under the highest possible processor speed, usually at Smax.

Hence, the intensity calculation of the jobs in J (φ) can be modified corre-
spondingly, as Eq. 12

Ie(t) = max
JjεJ (φ)

(∑
di≤dj

ci

dj − t − Wk(φ)

)
(12)

Further, the effective processor load of the jobs in J (φ) can also be modified
correspondingly, as Eq. 13

he(φ) =

∑
JiεJ (φ)

ci

dmax − Wk(φ)
(13)

4.3 Description of the EMES-DVFS Scheduler

We consider a job set J of n jobs J = {J1, J2, · · · , Jn} that can tolerate up to
k faults. Let Q(φ) be the list of ready but uncompleted jobs for execution in the
time interval φ = [ts, tf]. We can formulate our EMLPEDF algorithm to obey
the following rules:

Rule 1: The EDF scheduler is used to select the future running jobs in Q(φ).
Rule 2: The processor is imperatively idle in [ts, ts + 1) if Q(φ) is empty.
Rule 3: The processor is imperatively busy in [ts, ts + 1) if Q(φ) is not empty

and 0 < C(ts) ≤ C. Hence, the following steps must be performed:
1. Select the job, say Ji with the highest priority.
2. Calculate the effective processor load he(φ) and intensity Ie(φ) using

Eqs. 13 and 12 respectively.
3. Set the speed Sei of job Ji to the maximum between he(φ) and Ie(φ).

Rule 4: If Sei < Smin, then Sei = Smin ∀ JiεJ (φ).
Rule 5: If job, say Jj is released with dj < di, then update Sei by Rule 3.
Rule 6: If job, say Jk is released with dk > di, then complete the execution of

Ji.
Rule 7: If job, say Jk is released with dk > di, and ck > dk − di then update

Sei by Rule 3.
Rule 8: Calculate the energy consumption Ei(Sei) according to Eq. (2).
Rule 9: Calculate the energy level in the battery when the job ends its execution.
Rule 10: Remove job Ji from the queue Q(φ).
Rule 11: Repeat step (1)–(8) until the queue Q is empty.

Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems 201

5 Simulation Results

We compare the performance of four scheduling algorithms: EMES-DVFS, MES-
DVFS, NPM and LPSSR proposed in [12]. NPM scheme executes jobs with max-
imum frequency and does not scale down the voltage/frequency. We developed a
discrete event-driven simulator in C that generates a job set J where the number
of jobs varies from 10 to 50. The simulation is repeated 100 times for the same
number of jobs.

For the sake of clarity, we use NPM as a reference schedule that represents
the schedule of given set of jobs J without incorporating DVFS. We consider
that all the plotted energy consumptions are normalized to NPM. We consider
that α = 2, Cef = 1, Pind = 0.05, and Smin is equal to 0.25.

We compute the simulation results by using a discrete DVFS processor that
operates on 8 frequency levels {1.00, 0.86, 0.76, 0.67, 0.57, 0.47, 0.38, 0.28} as in
the PentiumM processor.

5.1 Experiment 1: Energy Consumption by Varying the Number
of Jobs

First, we take interest in how energy consumption of the processor changes when
we vary the number of jobs. We report here the results of four simulation studies
where the fault rate is set to 10−5 and the number of jobs varies from 10 to 50.
Further, we consider that the number of faults is strictly equal to 1 (k = 1).
In each of the four schedulers, we compute the normalized energy consumption
metric of the used speed. Figure 1 shows the expected energy consumption of
EMES-DVFS and MES-DVFS versus previous schedulers like NPM and LPSSR.

From Fig. 1, we find that the energy consumption of the four schedulers
increases as the number of jobs becomes larger. This is reasonable since the
likelihood of having large slack time that can be used for DVFS is diminishing
as we increase the number of jobs. Further, a significant amount of energy saving
is gained by EMES-DVFS and MES-DVFS schemes since it can benefit from the
significant amount of slack time that decreases the expected consumption of
energy. In other words, EMES-DVFS and MES-DVFS can effectively assign the
speeds for every job such that the job set becomes feasible at a speed closest to
the critical speed.

When the number of jobs is low, we find that the reduction in energy con-
sumption that is achieved by the tested algorithms are approximately the same.
This is because most jobs are executed at the lowest speed. With the increasing
number of jobs, our scheduler demonstrates its great advantage in achieving a
high energy saving. As an average, EMES-DVFS can achieve an additional 51%
and 20% of energy saving when we compare it with NPM and LPSSR, respec-
tively. Further, the difference in energy consumption is around 12% between
EMES-DVFS can MES-DVFS, since in the EMES-DVFS scenario, the recovery
from one faulty job is performed at maximum processor speed and subsequent
slack is left for DVFS.

202 H. El Ghor et al.

5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

1.2

Number of Jobs

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
LPSSR MES−DVFS EMES−DVFS NPM

Fig. 1. Energy savings by varying the numbers of jobs, k = 1

We conclude that our approach gains more energy savings in such a way that
it can benefit from the slacks generated during execution and hence it can use
all the available slack time.

6 Conclusions

In this work, we proposed and evaluated a new novel approach, which aims to
enhance energy savings when scheduling a real-time job set that can tolerate
up to k transient faults while still respecting time and energy constraints. We
benefit from the slacks generated during run-time to the maximum extent in such
a way that all the available slack time is used for energy reduction, which is car-
ried out using dynamic voltage and frequency scaling (DVFS). Under this notion,
we propose an algorithm that estimates an optimal speed reduction mechanism
which maintains feasibility within predefined timing constraints when no more
than k faults occur.

Our scheduler dynamically adjusts the jobs’ slowdown factors by using the
run-time slacks which may be increased for recovery demands of the system. It
differs from the previous approaches where the assignments of job frequencies
are predetermined, and hence it is more flexible and adaptive in minimizing
energy consumption while still keeping the systems reliability at a desired level.
Simulation results proved that the presented scheduler can significantly reduce
energy consumption when compared with the existing works.

Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems 203

References

1. Shin, Y., Choi, K., Sakurai, T.: Power optimization of real-time embedded sys-
tems on variable speed processors. In: Proceedings of the International Conference
on Computer-Aided Design, pp. 365–368 (2000). https://doi.org/10.1109/ICCAD.
2000.896499

2. Quan, G., Hu, X.: Energy efficient fixed-priority scheduling for real-time systems on
variable voltage processors. In: Proceedings of the Design Automation Conference,
pp. 828–833 (2001). https://doi.org/10.1109/DAC.2001.156251

3. Srinivasan, J., Adve, S.V., Bose, P., Rivers, J., Hu, C.K.: Ramp: a model for
reliability aware microprocessor design. IBM Research Report, RC23048 (2003)

4. Castillo, X., McConnel, S.R., Siewiorek, D.P.: Derivation and calibration of a tran-
sient error reliability model. IEEE Trans. Comput. 31, 658–671 (1982). https://
doi.org/10.1109/TC.1982.1676063

5. Aydin, H., Melhem, R., Mosse, D., Mejia-Alvarez, P.: Power-aware scheduling for
periodic real-time tasks. IEEE Trans. Comput. 53(5), 584–600 (2004)

6. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
pp. 374–382, October 1995

7. Zhang, Y., Chakrabarty, K., Swaminathan, V.: Energy-aware fault tolerance in
fixed-priority real-time embedded systems. In: Proceedings of the 2003 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 2003 (2003)

8. El Ghor, H., Aggoune, E.M.: Energy efficient scheduler of aperiodic jobs for real-
time embedded systems. Int. J. Autom. Comput. 1–11 (2016)

9. EL Ghor, H., Chetto, M.: Energy guarantee scheme for real-time systems with
energy harvesting constraints. Int. J. Autom. Comput. (to appear)

10. Zhao, B., Aydin, H., Zhu, D.: Energy management under general task-level relia-
bility constraints. In: IEEE 18th Real Time and Embedded Technology and Appli-
cations Symposium (2012)

11. Zhao, B., Aydin, H., Zhu, D.: Generalized reliability-oriented energy management
for real-time embedded applications. In: 48th ACM/EDAC/IEEE Design Automa-
tion Conference (DAC), pp. 381–386, June 2011

12. Han, Q., Niu, L., Quan, G., Ren, S., Ren, S.: Energy efficient fault-tolerant earliest
deadline first scheduling for hard real-time systems. Real-Time Syst. 50, 592–619
(2014)

13. Burd, T.D., Brodersen, R.W.: Energy efficient CMOS microprocessor design. In:
Proceedings of the HICSS Conference, January 1995

14. Hazucha, P., Svensson, C.: Impact of CMOS technology scaling on the atmospheric
neutron soft error rate. IEEE Trans. Nuclear Sci. 47(6), 2586–2594 (2000). https://
doi.org/10.1109/23.903813

https://doi.org/10.1109/ICCAD.2000.896499
https://doi.org/10.1109/ICCAD.2000.896499
https://doi.org/10.1109/DAC.2001.156251
https://doi.org/10.1109/TC.1982.1676063
https://doi.org/10.1109/TC.1982.1676063
https://doi.org/10.1109/23.903813
https://doi.org/10.1109/23.903813

